[1] JAYAKRISHNA K, KAR V R, SULTAN M T H, et al. Materials selection for aerospace components[M]//Sustainable Composites for Aerospace Applications. Amsterdam: Elsevier, 2018: 1-18. [2] MEOLA C, BOCCARDI S, CARLOMAGNO G M. Composite material overview and its testing for aerospace components[M]//Sustainable Composites for Aerospace Applications. Amsterdam: Elsevier, 2018: 69-108. [3] RANA S, PARVEEN S, FANGUEIRO R. Multiscale composites for aerospace engineering[M]//Advanced Composite Materials for Aerospace Engineering. Amsterdam: Elsevier, 2016: 265-293. [4] 顾轶卓, 李敏, 李艳霞, 等. 飞行器结构用复合材料制造技术与工艺理论进展[J]. 航空学报, 2015, 36(8): 2773-2797. GU Y Z, LI M, LI Y X, et al. Progress on manufacturing technology and process theory of aircraft composite structure[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8): 2773-2797(in Chinese). [5] ZHAOQ, ZHANG K, ZHU S, et al. Review on the electrical resistance/conductivity of carbon fiber reinforced polymer[J]. Applied Sciences, 2019, 9(11): 2390. [6] 李涤尘,鲁中良,田小永,等.增材制造——面向航空航天制造的变革性技术[J/OL].航空学报,[2021-05-02].http://hkxb.buaa.edu.cn/CN/10.7527/S1000-6893.2021.25387. LI D C, LU Z L, TIAN X Y, et al. Additive manufacturing-revolutionary technology for leading the aerospace manufacturing[J/OL]. Acta Aeronautica et Astronautica Sinica,[2021-05-02].http://hkxb.buaa.edu.cn/CN/10.7527/S1000-6893.2021.25387. [7] CALADO E A, LEITE M, SILVA A. Selecting composite materials considering cost and environmental impact in the early phases of aircraft structure design[J]. Journal of Cleaner Production, 2018, 186: 113-122. [8] KARCH C, METZNER C. Lightning protection of carbon fibre reinforced plastics—An overview[C]//2016 33rd International Conference on Lightning Protection(ICLP). Piscataway: IEEE Press, 2016: 1-8. [9] 刘锐, 张丽. 复合材料飞机电搭接/接地研究[J]. 航空科学技术, 2016, 27(8): 31-35. LIU R, ZHANG L. Research oncomposite aircraft electrical bonding/grounding[J]. Aeronautical Science & Technology, 2016, 27(8): 31-35(in Chinese). [10] JONES C E, NORMAN P J, GALLOWAY S J, et al. Electrical model of carbon fibre reinforced polymers for the development of electrical protection systems for more-electric aircraft[C]//2016 18th European Conference on Power Electronics and Applications(EPE’16 ECCE Europe). Piscataway: IEEE Press, 2016: 1-10. [11] GUTIERREZ G G, MATEOS ROMERO D, CABELLO M R, et al. On the design of aircraft electrical structure networks[J]. IEEE Transactions on Electromagnetic Compatibility, 2016, 58(2): 401-408. [12] REVEL I, PICHE A, PERES G, et al. Modeling strategy for functional current return in large CFRP structures for aircraft applications[C]//2008 International Symposium on Electromagnetic Compatibility-EMC Europe. Piscataway: IEEE Press, 2008: 1-5. [13] ZHANG X Y, XU G Z, ZHANG S, et al. Anumerical computation forward problem model of electrical impedance tomography based on generalized finite element method[J]. IEEE Transactions on Magnetics, 2014, 50(2): 1045-1048. [14] DUX L, ZOU J, WANG Z X. Calculation of the impedance of a rail track with earth return for the high-speed railway signal circuit using finite-element method[J]. IEEE Transactions on Magnetics, 2015, 51(3): 1-4. [15] RUEHLI A E. Equivalent circuit models for three-dimensional multiconductor systems[J]. IEEE Transactions on Microwave Theory and Techniques, 1974, 22(3): 216-221. [16] GARRETT J E. Advancements of the partial element equivalent circuit formulation[D].Lexington:The University of Kentucky,1997. [17] 丛国瑞. 基于部分元等效电路的电磁建模方法研究[D]. 长沙: 国防科学技术大学, 2011: 17-30. CONG G R. Study of electromagnetic modeling approach based on partial element equivalent circuit[D]. Changsha: National University of Defense Technology, 2011: 17-30(in Chinese). [18] 龙海波. 三维全媒质体系的部分元等效电路法及其建模[D]. 北京: 清华大学, 2005: 24-70. LONG H B. Partial element equivalent circuit method for three-dimensional fullmedium systems and its modeling[D]. Beijing: Tsinghua University, 2005: 24-70(in Chinese). [19] 张筱. 基于等效原理的PEEC建模研究[D]. 北京: 清华大学, 2009: 24-113. ZHANG X. Partial element equivalent circuit method based on equivalent principle[D]. Beijing: Tsinghua University, 2009: 24-113(in Chinese). [20] TORCHIO R. A volume PEEC formulation based on the cell method for electromagnetic problems from low to high frequency[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(12): 7452-7465. [21] BANDINELLI M, MORI A, GALGANI G, et al. A surface PEEC formulation for high-fidelity analysis of the current return networks in composite aircrafts[J]. IEEE Transactions on Electromagnetic Compatibility, 2015, 57(5): 1027-1036. [22] GOLEANU A L, DUNAND M, GUICHON J M, et al. Towards the conception and optimisation of the current return path in a composite aircraft[C]//2010 IEEE International Systems Conference. Piscataway: IEEE Press, 2010: 466-471. [23] GODDET E, RETIÈRE N, STOJANOVIC' V, et al. Maximizing the algebraic connectivity of meshed electrical pathways used as current return network[J]. Mathematics and Computers in Simulation, 2019, 158: 18-31. [24] 刘建英, 隋政, 张起浩, 等. 复合材料飞机接地回流网络建模与阻抗分析[J]. 北京航空航天大学学报, 2021, 47(5): 885-893. LIU J Y, SUI Z, ZHANG Q H,et al. Modeling and impedance analysis of composite material aircraft grounded return network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(5): 885-893(in Chinese). |