ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2023, Vol. 44 ›› Issue (1): 627697-627697.doi: 10.7527/S1000-6893.2022.27697
Previous Articles Next Articles
Junjie NIU1, Weimin SANG1,2(), Dong LI1, Lian HAO3, Zelin WANG4
Received:
2022-06-29
Revised:
2022-07-27
Accepted:
2022-08-16
Online:
2023-01-15
Published:
2022-08-31
Contact:
Weimin SANG
E-mail:aeroicing@sina.cn
Supported by:
CLC Number:
Junjie NIU, Weimin SANG, Dong LI, Lian HAO, Zelin WANG. Icing test flight area determination method based on surrogated model of water droplet collection[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(1): 627697-627697.
Table 4
Validation conditions
序号 | 温度/K | 高度/m | MVD/μm | LWC/ (g·m-³) | V/ (m·s-1) |
---|---|---|---|---|---|
Case 01 | 258.00 | 3 000 | 15 | 0.445 5 | 50 |
Case 02 | 268.00 | 1 200 | 15 | 0.697 0 | 55 |
Case 03 | 243.15 | 6 700 | 15 | 0.200 0 | 60 |
Case 04 | 268.15 | 1 200 | 25 | 0.402 7 | 65 |
Case 05 | 258.00 | 3 000 | 25 | 0.227 7 | 70 |
Case 06 | 243.15 | 6 700 | 25 | 0.099 5 | 75 |
Case 07 | 268.00 | 1 200 | 35 | 0.206 7 | 80 |
Case 08 | 258.00 | 3 000 | 35 | 0.117 3 | 85 |
Case 09 | 243.15 | 6 700 | 35 | 0.049 8 | 90 |
Table 6
Core area coordinates and average icing intensity
高度层eta | 经度/(°) | 纬度/(°) | 平均 高度/m | 平均结冰强度/ (mm·min-1) |
---|---|---|---|---|
5 | -70.822 0 | 44.196 4 | 1 671 | 1.26 |
-70.240 6 | 44.548 4 | |||
-70.189 8 | 44.503 7 | |||
-70.757 3 | 44.146 0 | |||
6 | -70.524 6 | 44.402 0 | 2 042 | 1.25 |
-70.125 3 | 44.659 6 | |||
-69.969 3 | 44.523 2 | |||
-70.382 5 | 44.275 7 | |||
7 | -70.130 8 | 44.623 8 | 2 414 | 1.23 |
-69.958 0 | 44.739 2 | |||
-69.872 0 | 44.667 7 | |||
-70.044 0 | 44.574 2 |
1 | SMITH W L. Weather problems peculiar to the New York-Chicago airway[J]. Monthly Weather Review, 1929, 57(12): 503-506. |
2 | 李浩然, 段玉宇, 张宇飞, 等. 结冰模拟软件AERO-ICE中的关键数值方法[J]. 航空学报, 2021, 42(S1): 726371. |
LI H R, DUAN Y Y, ZHANG Y F, et al. Numerical method of ice-accretion software AERO-ICE[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(S1): 726371 (in Chinese). | |
3 | WU Q, XU H J, PEI B B, et al. Conceptual design and preliminary experiment of icing risk management and protection system[J]. Chinese Journal of Aeronautics, 2022, 35(6): 101-115. |
4 | 林贵平,卜雪琴,申晓斌,等 .飞机结冰与防冰技术[M].北京: 北京航空航天大学出版社,2016: 164-168. |
LIN G P, BU X Q, SHEN X B, et al. Aircraft icing and anti-icing technology[M]. Beijing: Beihang University Press, 2016: 164-168 (in Chinese). | |
5 | 朱春玲,朱程香 .飞机结冰及其防护[M]. 北京: 科学出版社,2016. |
ZHU C L, ZHU C X. Aircraft icing and its protection[M]. Beijing: Science Press, 2016 (in Chinese). | |
6 | 彭锦峰, 吴东润, 崔为运, 等. 3D打印夹芯复合材料模拟冰型设计与分析[J]. 航空学报, 2021, 42(9): 224536. |
PENG J F, WU D R, CUI W Y, et al. Design and analysis of simulated ice with 3D printed sandwich composite material[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 224536 (in Chinese). | |
7 | 刘旭华. 飞机结冰适航验证和试飞技术[C]∥第十六届中国航空测控技术年会论文集. 北京: 测控技术杂志社, 2019: 32-34. |
LIU X H. Technology of airworthiness certification and flight test for aircraft icing[C]∥ The 16th China Aviation Measurement and Control Technology Annual Conference. Beijing:Editorial Office of Measurement and Control Technology Magazine, 2019: 32-34 (in Chinese). | |
8 | 李勤红, 乔建军, 陈增江. Y7-200A飞机自然结冰飞行试验[J]. 飞行力学, 1999, 17(2): 64-69. |
LI Q H, QIAO J J, CHEN Z J. Natural icing flight test for Y7-200A aircraft[J]. Flight Dynamics, 1999, 17(2): 64-69 (in Chinese). | |
9 | 王泽林, 倪洪波, 裴昌春. 我国干旱地区一次直升机自然结冰试飞天气个例分析[J]. 沙漠与绿洲气象, 2020, 14(2): 68-74. |
WANG Z L, NI H B, PEI C C. A case study of helicopter natural icing flight test in arid areas of China[J]. Desert and Oasis Meteorology, 2020, 14(2): 68-74 (in Chinese). | |
10 | 李佰平, 戴建华, 孙敏, 等. 一种改进的飞机自然结冰潜势算法研究[J]. 气象, 2018, 44(11): 1377-1390. |
LI B P, DAI J H, SUN M, et al. An improved aircraft natural icing potential algorithm[J]. Meteorological Monthly, 2018, 44(11): 1377-1390 (in Chinese). | |
11 | SCHULTZ P, POLITOVICH M K. Toward the improvement of aircraft-icing forecasts for the continental United States[J]. Weather and Forecasting, 1992, 7(3): 491-500. |
12 | BELO-PEREIRA M. Comparison of in-flight aircraft icing algorithms based on ECMWF forecasts[J]. Meteorological Applications, 2015, 22(4): 705-715. |
13 | POLITOVICH M G, SAND W R .A proposed icing severity index based upon meteorology[C]∥4th International Conference on Aviation Weather Systems. Paris:Bulletin of the American Meteorological Society, 1991: 157-162. |
14 | THOMPSON G, BRUINTJES R T, BROWN B G, et al. Intercomparison of in-flight icing algorithms. Part I: WISP94 real-time icing prediction and evaluation program[J]. Weather and Forecasting, 1997, 12(4): 878-889. |
15 | THOMPSON G, BULLOCK R, LEE T F. Using satellite data to reduce spatial extent of diagnosed icing[J]. Weather and Forecasting, 1997, 12(1): 185-190. |
16 | BERNSTEIN B C, MCDONOUGH F, POLITOVICH M K, et al. Current icing potential: Algorithm description and comparison with aircraft observations[J]. Journal of Applied Meteorology and Climatology, 2005, 44(7): 969-986. |
17 | MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605. |
18 | 易贤. 飞机积冰的数值计算与积冰试验相似准则研究[D]. 绵阳: 中国空气动力研究与发展中心, 2007: 56-57. |
YI X. Numerical computation of aircraft icing and study on icing test scaling law[D]. Mianyang: Aerodynamics Research and Development Center, 2007: 56-57 (in Chinese). | |
19 | 胡剑平, 刘振侠, 张丽芬. 霜状冰结冰数值模拟研究[J]. 航空计算技术, 2011, 41(6): 8-11, 15. |
HU J P, LIU Z X, ZHANG L F. Numerical simulation of 3D rime ice[J]. Aeronautical Computing Technique, 2011, 41(6): 8-11, 15 (in Chinese). | |
20 | BERKOOZ G, HOLMES P, LUMLEY J L. The proper orthogonal decomposition in the analysis of turbulent flows[J]. Annual Review of Fluid Mechanics, 1993, 25: 539-575. |
21 | CAZEMIER W, VERSTAPPEN R W C P, VELDMAN A E P. Proper orthogonal decomposition and low-dimensional models for driven cavity flows[J]. Physics of Fluids, 1998, 10(7): 1685-1699. |
22 | KRIGE D G. A statistical approach to some basic mine valuation problems on the witwatersrand[J]. Journal of the Chemical, Metallurgical & Mining Society of South Africa, 1951, 52(6): 119-139. |
23 | PELLISSIER M P C, HABASHI W G, PUEYO A. Optimization via FENSAP-ICE of aircraft hot-air anti-icing systems[J]. Journal of Aircraft, 2011, 48(1): 265-276. |
24 | 刘藤, 李栋, 黄冉冉, 等. 基于降阶模型的翼型结冰冰形预测方法[J]. 北京航空航天大学学报, 2019, 45(5): 1033-1041. |
LIU T, LI D, HUANG R R, et al. Ice shape prediction method of aero-icing based on reduced order model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(5): 1033-1041 (in Chinese). | |
25 | IULIANO E, BRANDI V, MINGIONE G, et al. Water impingement prediction on multi-element airfoils by means of Eulerian and Lagrangian approach with viscous and inviscid air flow: AIAA-2006-1270[R]. Reston: AIAA, 2006. |
26 | SKAMAROCK W C, KLEMP J B, DUDHIA J, et al. A description of the advanced research WRF model version 4[J/OL]. OpenSky, (2021-07-20) [2022-08-21]. . |
27 | MORRISON H, CURRY J A, KHVOROSTYANOV V I. A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description[J]. Journal of the Atmospheric Sciences, 2005, 62(6): 1665-1677. |
28 | KAIN J S. The kain-fritsch convective parameterization: an update[J]. Journal of Applied Meteorology, 2004, 43(1): 170-181. |
29 | HONG S Y, NOH Y, DUDHIA J. A new vertical diffusion package with an explicit treatment of entrainment processes[J]. Monthly Weather Review, 2006, 134(9): 2318-2341. |
30 | COBER S G, ISAAC G A, STRAPP J W. Aircraft icing measurements in east coast winter storms[J]. Journal of Applied Meteorology and Climatology, 1995, 34(1): 88-100. |
31 | JONES S L. Simulation of meteorological fields for icing applications at the summit of mount washington[D]. Nebraska: University of Nebraska, 2014: 42-47. |
[1] | Zhuangzhuang CUI, Xin YUAN, Guoqing ZHAO, Simeng JING, Qijun ZHAO. Influence of control strategy on forward flight performance of coaxial rigid rotor high⁃speed helicopters [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529256-529256. |
[2] | Jiaqi LIU, Rongqian CHEN, Jinhua LOU, Xu HAN, Hao WU, Yancheng YOU. Aerodynamic shape optimization of high-speed helicopter rotor airfoil based on deep learning [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529828-529828. |
[3] | Yuhan LI, Baoyu YANG, Yinong WU, Qiang ZHANG, Xiao TANG. Research on parameters correction method for thermal model of satellite optomechanical load [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 628814-628814. |
[4] | Shusheng CHEN, Cong FENG, Zhaokang ZHANG, Ke ZHAO, Xinyang ZHANG, Zhenghong GAO. Aerodynamic design of wide-speed-range waverider-wing configuration based on global & gradient optimization method [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 629596-629596. |
[5] | Huajie XIONG, Yijing AN, Zhulong WU, Zhihong ZHOU. Extension of Eulerian wall film model in icing simulation [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729287-729287. |
[6] | Yinglin YANG, Shinan CHANG, Qiyu SHI, Haifeng QI. Experiment of shear-driven water film [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729290-729290. |
[7] | Dazhi SHI, Weimin SANG, Shijie LI, Bo AN. Numerical simulation of water droplet impact characteristics on icing surfaces based on LBM [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729192-729192. |
[8] | Huan ZHAO, Zhenghong GAO, Lu XIA. Novel multi-fidelity surrogate model assisted many-objective optimization method [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(6): 126962-126962. |
[9] | Lei HE, Weiqi QIAN, Kangsheng DONG, Xian YI, Congcong CHAI. Aerodynamic characteristics modeling of iced airfoil based on convolution neural networks [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 126434-126434. |
[10] | Huan ZHAO, Zhenghong GAO, Lu XIA. Aerodynamic shape design optimization method based on novel high⁃dimensional surrogate model [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 126924-126924. |
[11] | Jinghao REN, Qiang WANG, Weihao LI, Yu LIU, Xian YI. A prediction algorithm of collection efficiency based on gradient descent method [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(4): 126381-126381. |
[12] | Zhiyang ZHENG, Yang ZHANG, Zhao ZHANG, Baohai WU, Ying ZHANG. Layout optimization of auxiliary support for thin-walled blade based on GA-SVR [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(4): 426805-426805. |
[13] | Ting YU, Luyi LI, Yushan LIU, Zeming CHANG. Efficient Bayesian updating method under observation uncertainty and its application in wing structure [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(24): 228592-228592. |
[14] | Wanying YUN, Zhenzhou LYU. An efficient surrogate method for analyzing parameter global reliability sensitivity [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(12): 227670-227670. |
[15] | Qilei GUO, Weimin SANG, Junjie NIU, Ye YUAN. UAV flight strategy considering icing risk under complex meteorological conditions [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(1): 627518-627518. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341