1 |
WALKER S, TANG M, MAMPLATA C. TBCC propulsion for a Mach 6 hypersonic airplane[C]∥16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2009.
|
2 |
左林玄, 张辰琳, 王霄, 等. 高超声速飞机动力需求探讨[J]. 航空学报, 2021, 42(8): 525798.
|
|
ZUO L X, ZHANG C L, WANG X, et al. Requirement of hypersonic aircraft power[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525798 (in Chinese).
|
3 |
YOU Y C, YIN Z Y, ZHU J F, et al. Combined cycle flight propulsion systems: US20200240362[P]. 2020-07-30.
|
4 |
尹泽勇, 蔚夺魁, 徐雪. 高马赫数涡轮基推进系统的发展及挑战[J]. 航空发动机, 2021, 47(4): 1-7.
|
|
YIN Z Y, YU D K, XU X. Development trend and technical challenge of high Mach number turbine based propulsion system[J]. Aeroengine, 2021, 47(4): 1-7 (in Chinese).
|
5 |
MERLIN P W. Mach 3 legend: Design and development of the Lockheed Blackbird: DFRC-E-DAA-TN5178[R]. Washington, D.C.: NASA, 2012.
|
6 |
ITO M. International collaboration in super/hypersonic propulsion system research project (HYPR)[J]. The Aeronautical Journal, 2000, 104(1040): 445-451.
|
7 |
MCNELIS N, BARTOLOTTA P. Revolutionary turbine accelerator (RTA) demonstrator[C]∥AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference. Reston: AIAA, 2005.
|
8 |
BARTOLOTTA P A, QUIGLEY B F. Turbine based combined/combination cycle/RTA project overview[R]. Washington, D.C.: NASA, 2000.
|
9 |
聂聆聪, 李岩, 戴冬红, 等. 涡轮冲压组合发动机模态转换多变量控制研究[J]. 推进技术, 2017, 38(5): 968-974.
|
|
NIE L C, LI Y, DAI D H, et al. Study on mode transition multi-variable control for turbine-based combined cycle engine[J]. Journal of Propulsion Technology, 2017, 38(5): 968-974 (in Chinese).
|
10 |
谢健, 李中龙, 李丹, 等. 串联式TBCC后涵道引射器设计[J]. 燃气涡轮试验与研究, 2020, 33(1): 12-18, 53.
|
|
XIE J, LI Z L, LI D, et al. Design of rear bypass injector for tandem turbine based combined cycle engine[J]. Gas Turbine Experiment and Research, 2020, 33(1): 12-18, 53 (in Chinese).
|
11 |
ZHAO Q J, ZHAO W, XU J Z, et al. Counter-rotating compressor flow mechanism and aerodynamic design[J]. Scientia Sinica Technologica, 2020, 50(10): 1359-1375.
|
12 |
MAMPLATA C, TANG M. Technical approach to turbine-based combined cycle: FaCET[C]∥45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2009.
|
13 |
WALKER S, TANG M, MAMPLATA C. TBCC propulsion for a Mach 6 hypersonic airplane[C]∥16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2009.
|
14 |
MISHORY J. DARPA seeks to develop, test reusable hypersonic propulsion system[J]. Inside the Pentagon, 2016, 32(36): 4.
|
15 |
SIEBENHAAR A, BOGAR T. Integration and vehicle performance assessment of the aerojet “TriJet” combined-cycle engine[C]∥16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2009.
|
16 |
BULMAN M, SIEBENHAAR A. Combined cycle propulsion: Aerojet innovations for practical hypersonic vehicles[C]∥17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2011.
|
17 |
WEI B X, LING W H, LUO F T, et al. Propulsion performance research and status of TRRE engine experiment[C]∥21st AIAA International Space Planes and Hypersonics Technologies Conference. Reston: AIAA, 2017.
|
18 |
韦宝禧, 凌文辉, 冮强, 等. TRRE发动机关键技术分析及推进性能探索研究[J]. 推进技术, 2017, 38(2): 298-305.
|
|
WEI B X, LING W H, GANG Q, et al. Analysis of key technologies and propulsion performance research of TRRE engine[J]. Journal of Propulsion Technology, 2017, 38(2): 298-305 (in Chinese).
|
19 |
VARVILL R, BOND A. SKYLON-A key element of a future space transportation system[J]. Spaceflight, 1993, 35(5): 162-166.
|
20 |
JIVRAJ F, VARVILL R, BOND A, et al. The scimitar precooled Mach 5 engine[C]∥European Conference for Aero-space Sciences, 2007.
|
21 |
DONG P C, TANG H L, CHEN M, et al. Overall performance design of paralleled heat release and compression system for hypersonic aeroengine[J]. Applied Energy, 2018, 220: 36-46.
|
22 |
LEE H, MA S, CHEN Y M, et al. Experimental study on compact heat exchanger for hypersonic aero-engine[C]∥21st AIAA International Space Planes and Hypersonics Technologies Conference. Reston: AIAA, 2017.
|
23 |
CHEN Y M, ZOU Z P, FU C. A study on the similarity method for helium compressors[J]. Aerospace Science and Technology, 2019, 90: 115-126.
|
24 |
邹正平, 王一帆, 额日其太, 等. 高超声速强预冷航空发动机技术研究进展[J]. 航空发动机, 2021, 47(4): 8-21.
|
|
ZOU Z P, WANG Y F, ERI Q T, et al. Research progress on hypersonic precooled airbreathing engine technology[J]. Aeroengine, 2021, 47(4): 8-21 (in Chinese).
|
25 |
郭峰, 桂丰, 尤延铖, 等. 一种涡轮基组合动力的整机低速风洞试验研究[J]. 推进技术, 2019, 40(11): 2436-2443.
|
|
GUO F, GUI F, YOU Y C, et al. Experimental study of TBCC engine performance in low speed wind tunnel[J]. Journal of Propulsion Technology, 2019, 40(11): 2436-2443 (in Chinese).
|
26 |
ZHU C X, ZHANG X, KONG F, et al. Design of a three-dimensional hypersonic inward-turning inlet with tri-ducts for combined cycle engines[J]. International Journal of Aerospace Engineering, 2018, 2018: 7459141.
|
27 |
ZHU C X, ZHANG H F, HU Z C, et al. Analysis on the low speed performance of an inward-turning multiduct inlet for turbine-based combined cycle engines[J]. International Journal of Aerospace Engineering, 2019, 2019: 6728387.
|
28 |
SHI C G, HAN W Q, DEITERDING R, et al. Second-order curved shock theory[J]. Journal of Fluid Mechanics, 2020, 891: A21.
|
29 |
郭峰, 朱剑锋, 尤延铖, 等. 涡轮基组合动力与火箭的耦合特性分析及匹配优化设计[J]. 航空学报, 2021, 42(7): 124755.
|
|
GUO F, ZHU J F, YOU Y C, et al. Performance coupling analysis and optimal design of rocket-assisted turbine-based combined cycle engines[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 124755 (in Chinese).
|
30 |
YANG S B, CUI T, HAO X Y, et al. Trajectory optimization for a ramjet-powered vehicle in ascent phase via the Gauss pseudospectral method[J]. Aerospace Science and Technology, 2017, 67: 88-95.
|
31 |
GUO F, LUO W G, GUI F, et al. Efficiency analysis and integrated design of rocket-augmented turbine-based combined cycle engines with trajectory optimization[J]. Energies, 2020, 13(11): 2911.
|