| [1] 谷海波,刘克新,吕金虎.集群系统协同控制:机遇与挑战[J].指挥与控制学报,2021,第7卷(1):1-10.
GU H B, LIU K X, Lü J H. Cooperative control of swarm systems:opportunities and challenges[J]. Jour-nal of Command and Control, 2021, 7(1): 1-10.
[2] 吕金虎, 文力, 李磊, 等. 跨水空介质集群机器人研究现状与展望[J]. 中国科学: 技术科学, 2025, 55(5): 807-826.
Lü J H, WEN L, LI L, et al. Research status and pro-spects of aerial-aquatic swarm robots[J]. Scientia Sini-ca(Technologica), 2025, 55(5): 807-826.
[3] LYU M Y, ZHAO Y B, HUANG C, et al. Unmanned aerial vehicles for search and rescue: A survey[J]. Re-mote Sensing, 2023, 15(13): 3266.
[4] SUN G B, ZHOU R, MA Z, et al. Mean-shift explora-tion in shape assembly of robot swarms[J]. Nature Communications, 2023, 14(1): 3476.
[5] Lü J H, ZE K R, YUE S Y, et al. Concurrent-learning based relative localization in shape formation of robot swarms[J]. IEEE Trnsactions on Automation Science and Engineering, 2025, 22: 11188-11204.
[6] 吕金虎, 汪宗福, 刘克新, 于江龙, 刘德元. 基于双/多基SAR的集群协同探测与制导新进展[J]. 航空学报, 2025, 46(6): 531548.
Lü J H, WANG Z F, LIU K X, et al. New progress in cluster collaborative detection and guidance based on bi/multi-static SAR[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(6): 531548.
[7] QU Q Y, LIU K X, LI X J, et al. Satellite observation and data-transmission scheduling using imitation Learning based on mixed integer linear programming[J]. IEEE Transactions on Aerospace and Electronic Sys-tems, 2023, 59(2): 1989-2001.
[8] BAYRAM H, BOZMA H I. Coalition formation games for dynamic multirobot tasks[J]. The International Journal of Robotics Research, 2016, 35(5): 514-527.
[9] KHAMIS A, HUSSEIN A, ELMOGY A. Multi-robot task allocation: a review of the state-of-the-art[J]. Springer Verlag, 2015: 31-51.
[10] SEENU N, RM K C, RAMYA M M. Review on state-of-the-art dynamic task allocation strategies for multi-ple-robot systems[J]. Industrial Robot: the international journal of robotics research and application, 2020, 47(6): 929-942.
[11] CHAKRAA H, GUERIN F, LECLERCQ E, et al. Opti-mization techniques for Multi-Robot Task Allocation problems: Review on the state-of-the-art[J]. Robotics and Autonomous Systems, 2023, 168: 104492.
[12] TURNER J, MENG Q G, SCHAEFER G, et al. Distrib-uted task rescheduling with time constraints for the op-timization of total task allocations in a multirobot sys-tem[J]. IEEE Transactions on Cybernetics, 2018, 48(9): 2583-2597.
[13] DENG R L, YAN R, HUANG P N, et al. A distributed auction algorithm for task assignment with robot coali-tions[J]. IEEE Transactions on Robotics, 2024, 40: 4787-4804.
[14] WANG S L, LIU Y J, QIU Y T, et al. Consensus-based decentralized task allocation for multi-agent systems and simultaneous multi-agent tasks[J]. IEEE Robotics and Automation Letters, 2022, 7(4): 12593-12600.
[15] VELHAL S, SUNDARAM S, SUNDARARAJAN N. A decentralized multirobot spatiotemporal multitask as-signment approach for perimeter defense[J]. IEEE Transactions on Robotics, 2022, 38(5): 3085-96.
[16] CHOPRA S, NOTARSTEFANO G, RICE M, et al. A distributed version of the Hungarian method for multi-robot assignment[J]. IEEE Transactions on Robotics, 2017, 33(4): 932-947.
[17] ISMAIL S, SUN L. Decentralized Hungarian-based approach for fast and scalable task allocation[C]// In-ternational Conference on Unmanned Aircraft Systems (ICUAS). Miami, Florida, USA: IEEE, 2017: 23-28.
[18] SAMIEI A, SUN L. Distributed recursive Hungarian-based approaches to fast task allocation for unmanned aircraft systems[C]// AIAA Scitech 2020 Forum. Orlan-do, Florida, USA: AIAA, 2020: 1 PartF.
[19] SAMIEI A, SUN L. Distributed matching-by-clone Hungarian-based algorithm for task allocation of multi-agent systems[J]. IEEE Transactions on Robotics, 2024, 40(1): 851-863.
[20] ZHANG Z, JIANG J, ZHANG W A. Distributed dy-namic task allocation for unmanned aerial vehicle swarm systems: A networked evolutionary game-theoretic approach[J]. Chinese Journal of Aeronautics, 2024, 37(6): 182-204.
[21] JANG I M, SHIN H S, TSOURDOS A. Anonymous hedonic game for task allocation in a large-scale multi-ple agent system[J]. IEEE Transactions on Robotics, 2018, 34(6): 1534-1548.
[22] HU J Y., BHOWMICK P, JANG I M, et al. A decentral-ized cluster formation containment framework for mul-tirobot systems[J]. IEEE Transactions on Robotics, 2021, 37(6): 1936-1955.
[23] ZHAO X Y, ZONG Q, TIAN B L, et al. Fast task alloca-tion for heterogeneous unmanned aerial vehicles through reinforcement learning[J]. Aerospace Science and Technology, 2019, 92: 588-594.
[24] NG J S, LIM W Y B, XIONG Z H, et al. Reputation-aware hedonic coalition formation for efficient server-less hierarchical federated learning[J]. IEEE Transac-tions on Parallel and Distributed Systems, 2021, 33(11): 2675-2686.
[25] KUHN H W. The Hungarian method for the assignment problem[J]. Naval Research Logistics Quarterly, 1955, 2: 83.
[26] CHOI H L, BRUNET L, HOW J P. Consensus-based decentralized auctions for robust task allocation[J]. IEEE Transactions on Robotics, 2009, 25(4): 912-926.
[27] LU P. Entry guidance: a unified method[J]. Journal of guidance, control, and dynamics, 2014, 37(3): 713-28. |