1 |
KALIRAI J. Scientific discovery with the James Webb Space Telescope[J]. Contemporary Physics, 2018, 59(3): 251-290.
|
2 |
STELZER E H K, STROBL F, CHANG B J, et al. Light sheet fluorescence microscopy[J]. Nature Reviews Methods Primers, 2021, 1: 73.
|
3 |
TSUCHIDA K, IWASA T, KOBAYASHI M. Imaging of ultraweak photon emission for evaluating the oxidative stress of human skin[J]. Journal of Photochemistry and Photobiology B: Biology, 2019, 198: 111562.
|
4 |
JOHNSON S D, MOREAU P A, GREGORY T, et al. How many photons does it take to form an image?[J]. Applied Physics Letters, 2020, 116(26): 260504.
|
5 |
MORRIS P A, ASPDEN R S, BELL J E C, et al. Imaging with a small number of photons[J]. Nature Communications, 2015, 6: 5913.
|
6 |
MANDRACCHIA B, HUA X W, GUO C L, et al. Fast and accurate sCMOS noise correction for fluorescence microscopy[J]. Nature Communications, 2020, 11: 94.
|
7 |
TAKHAR D, LASKA J N, WAKIN M B, et al. A new compressive imaging camera architecture using optical-domain compression[C]∥Computational Imaging IV-Proceedings of SPIE-IS and T Electronic Imaging. 2006: 43-52.
|
8 |
DUARTE M F, DAVENPORT M A, TAKHAR D, et al. Single-pixel imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 83-91.
|
9 |
EDGAR M P, GIBSON G M, PADGETT M J. Principles and prospects for single-pixel imaging[J]. Nature Photonics, 2019, 13: 13-20.
|
10 |
LIU X L, SHI J H, SUN L, et al. Photon-limited single-pixel imaging[J]. Optics Express, 2020, 28(6): 8132-8144.
|
11 |
WANG H Y, BIAN L H, ZHANG J. Depth acquisition in single-pixel imaging with multiplexed illumination[J]. Optics Express, 2021, 29(4): 4866-4874.
|
12 |
JAUREGUI-SÁNCHEZ Y, CLEMENTE P, LATORRE-CARMONA P, et al. Signal-to-noise ratio of single-pixel cameras based on photodiodes[J]. Applied Optics, 2018, 57(7): B67-B73.
|
13 |
俞文凯, 姚旭日, 刘雪峰, 等. 压缩传感用于极弱光计数成像[J]. 光学 精密工程, 2012, 20(10): 2283-2292.
|
|
YU W K, YAO X R, LIU X F, et al. Compressed sensing for ultra-weak light counting imaging[J]. Optics and Precision Engineering, 2012, 20(10): 2283-2292 (in Chinese).
|
14 |
DABOV K, FOI A, KATKOVNIK V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 2007, 16(8): 2080-2095.
|
15 |
YAHYA A A, TAN J Q, SU B Y, et al. BM3D image denoising algorithm based on an adaptive filtering[J]. Multimedia Tools and Applications, 2020, 79(27): 20391-20427.
|
16 |
LEBRUN M. An analysis and implementation of the BM3D image denoising method[J]. Image Processing On Line, 2012, 2: 175-213.
|
17 |
EKSIOGLU E M, TANC A K. Denoising AMP for MRI reconstruction: BM3D-AMP-MRI[J]. SIAM Journal on Imaging Sciences, 2018, 11(3): 2090-2109.
|
18 |
ZHANG K, ZUO W M, CHEN Y J, et al. Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing, 2017, 26(7): 3142-3155.
|
19 |
ZHANG K, ZUO W M, ZHANG L. FFDNet: Toward a fast and flexible solution for CNN-based image denoising[J]. IEEE Transactions on Image Processing, 2018, 27(9): 4608-4622.
|
20 |
ZHANG K, LI Y W, ZUO W M, et al. Plug-and-play image restoration with deep denoiser prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(10): 6360-6376.
|
21 |
SANKARANARAYANAN A C, XU L N, STUDER C, et al. Video compressive sensing for spatial multiplexing cameras using motion-flow models[J]. SIAM Journal on Imaging Sciences, 2015, 8(3): 1489-1518.
|
22 |
LI C B, YIN W T, JIANG H, et al. An efficient augmented Lagrangian method with applications to total variation minimization[J]. Computational Optimization and Applications, 2013, 56(3): 507-530.
|
23 |
孙鸣捷, 闫崧明, 王思源. 鬼成像和单像素成像技术中的重建算法[J]. 激光与光电子学进展, 2022, 59(2): 0200001.
|
|
SUN M J, YAN S M, WANG S Y. Reconstruction algorithms for ghost imaging and single-pixel imaging[J]. Laser & Optoelectronics Progress, 2022, 59(2): 0200001 (in Chinese).
|
24 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 770-778.
|
25 |
RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]∥International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer International Publishing, 2015: 234-241.
|
26 |
李明飞, 阎璐, 杨然, 等. 日光强度涨落自关联消湍流成像[J]. 物理学报, 2019, 68(9): 149-156.
|
|
LI M F, YAN L, YANG R, et al. Turbulence-free intensity fluctuation self-correlation imaging with sunlight[J]. Acta Physica Sinica, 2019, 68(9): 149-156 (in Chinese).
|
27 |
YU W K. Super sub-Nyquist single-pixel imaging by means of cake-cutting Hadamard basis sort[J]. Sensors, 2019, 19(19): 4122.
|