Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (5): 529720-529720.doi: 10.7527/S1000-6893.2024.29720
• Reviews • Previous Articles Next Articles
Received:
2023-10-13
Revised:
2023-10-16
Accepted:
2023-10-31
Online:
2024-03-15
Published:
2023-11-09
Contact:
Weiping YANG
E-mail:wpyang@facri.com
CLC Number:
Weiping YANG. Development trend of navigation guidance and control technology for new generation aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529720-529720.
Table 1
List of typical projects in GNC field abroad
GNC领域 | 渠道 | 项目 |
---|---|---|
无人系统 | DARPA | FLA项目 CRANE项目 LongShot项目 ANCILLARY项目 |
美国陆军 | FTUAS项目 MQ-9死神项目 | |
美国防部 | Project Maven项目 | |
集群协同控制 | DARPA | CODE项目 AMASS项目 OFFSET项目 Gremlins项目 |
美国海军 | LOCUST项目 | |
美国陆军 | ALE项目 | |
导航与定位 | 美国空军 | 先锋计划(导航技术卫星-3) |
欧盟 | 伽利略欧盟防御军用PNT | |
英国 | 天基PNT计划与增强系统 | |
智能飞行控制 | DARPA | ACE项目 NGAD计划 精灵鲨Goblin项目 |
美国空军 | Skyborg项目 Loyal Wingman计划 | |
核心GNC器件 | DARPA | Rydberg量子传感器 CRANE先进效应器飞行控制 |
美国空军 | ANS适应性导航系统 | |
共性赋能技术 | DARPA | DBRE机载高性能计算 MALTA机动战术网络实验 COFFEE紧凑前端滤波器项目 |
Table 2
Typical foreign inertial navigation products
公司 | 典型产品 |
---|---|
霍尼韦尔 | GGI308、GGI320、GGI342、GGI389、HG9900、H-423、H-764G、Laserf系列惯导系统、TALIN系列海洋惯性导航系统 |
诺格 | LN93、LN100、LG2717、LG8028、PIXYZ22、LTN90、LTN101、MK39系列、MK49船舶用激光陀螺仪惯导系统 |
萨基姆 | Sigma30、Sigma40、Sigma95N、Sigma40EXP、Sigma40XP、惯导系统 |
基尔福特 | T-10、MRLG |
Sextant | SLIC-15、PIXY-14、PIXY-22 |
Polus | ZLK-16 |
泰雷兹 | 图腾3000 |
Aviapribor | BINS-85 |
Table 3
Advantageous institutes in field of navigation and sensing in China
国防科技大学 | 激光陀螺惯导系统、微半球谐振陀螺、 半球谐振陀螺 |
北京航空航天大学 | 高精度光纤惯导、航天器高精度惯性稳定与控制、SERF陀螺、SERF磁力仪 |
北京理工大学 | 陆用组合导航系统 |
西安交通大学 | MEMS传感器、量子传感器核心芯片 |
浙江工业大学 | 冷原子重力仪 |
航天科工集团三院33所 | 高动态惯性导航系统、小型化核磁共振陀螺 |
航天科技集团九院13所 | 平台式惯导及光学捷联惯导、高精度陀螺摆式加计,石英加计等惯性器件 |
航天科技集团八院803所 | 航天器半球谐振惯导 |
中船重工集团717所 | 航海领域旋转调制惯导、天文导航、 量子惯导 |
Table 4
Advantageous institutes in field of control and actuation in China
北京航空航天大学 | 无人飞行器、飞行器智能感知与控制、集群智能与协同、飞控作动、液压技术 |
西北工业大学 | 中小型无人机总体设计、飞行控制与制导算法 |
南京航空航天大学 | 轻小型直升机/飞翼布局飞行器控制、航空先进液压、电液伺服阀 |
浙江大学 | 流体传动及控制、机电系统集成 |
哈尔滨工业大学 | 特种电机及驱动控制、电机故障诊断与容错控制 |
航天十一院 | 无人机控制总体设计(飞翼布局、察打一体等) |
航天一院18所 | 电液伺服、燃气液压伺服、机电伺服、电静液伺服 |
航空工业601所 | 有人、无人飞行器飞行控制总体设计 |
航空工业609所 | 机载机电综合管理、环控、液压、燃油、辅助动力系统 |
1 | 范晋祥, 陈晶华. 未来空战新概念及其实现挑战[J]. 航空兵器, 2020, 27(2): 15-24. |
FAN J X, CHEN J H. New concepts of future air warfare and the challenges for its realization[J]. Aero Weaponry, 2020, 27(2): 15-24 (in Chinese). | |
2 | 石玲玲, 张恒, 吕博, 等. 美国空军装备技术体系规划及发展分析[J]. 国防科技, 2017, 38(5): 31-35. |
SHI L L, ZHANG H, LV B, et al. Analysis of equipment technical system planning and development of American Air Force[J]. National Defense Science & Technology, 2017, 38(5): 31-35 (in Chinese). | |
3 | 孙盛智, 苗壮, 高赞, 等. 美国马赛克战构想[J]. 火力与指挥控制, 2022, 47(10): 180-184. |
SUN S Z, MIAO Z, GAO Z, et al. The conception research of the U. S. mosaic warfare[J]. Fire Control & Command Control, 2022, 47(10): 180-184 (in Chinese). | |
4 | 鲜勇, 李扬. 人工智能技术对未来空战武器的变革与展望[J]. 航空兵器, 2019, 26(5): 26-31. |
XIAN Y, LI Y. Revolution and prospect of artificial intelligence technology for air combat weapons in the future[J]. Aero Weaponry, 2019, 26(5): 26-31 (in Chinese). | |
5 | United States Air Force Chief scientist. Technology horizons: A vision for air force science & technology during 2010-2030: AF/FS-TR-10-01-PR[R]. Washington, D.C.: US Air Force. |
6 | BUTZ H, SAS A. The airbus approach to open integrated modular avionics (ima): Technology, methods, processes and future road map[C]∥International Workshop on Aircraft System Technol-ogies.2010. |
7 | MING W. Research on architecture of integrated modular avionics[J].Electronics Optics & Control, 2009, 16(9): 47. |
8 | EVELEENS RLC. Integrated modular avionics development guidance and certification considerations: NTO SCILS-176[R].Amsterdam: National Aerospace Laboratory, 2006. |
9 | MOORE J F. Civil integrated modular avionics–a longer-term view[J]. Aircraft Engineering and Aerospace Technology, 1999, 71(6): 550-557. |
10 | SAVAGE P G. Blazing gyros: The evolution of strapdown inertial navigation technology for aircraft[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(3): 637-655. |
11 | 谭祖锋. 惯性导航技术的新进展及其发展趋势[J]. 电子技术与软件工程, 2019(5): 76. |
TAN Z F. New progress and development trend of inertial navigation technology[J]. Electronic Technology & Software Engineering, 2019(5): 76 (in Chinese). | |
12 | 高钟毓. 惯性导航系统技术[M]. 北京: 清华大学出版社, 2012. |
GAO Z Y. Inertial navigation system technology[M]. Beijing: Tsinghua University Press, 2012 (in Chinese). | |
13 | TITTERTON D, WESTON J. Strapdown inertial navigation technology-2nd edition-Book review[J]. IEEE Aerospace and Electronic Systems Magazine, 2005, 20(7): 33-34. |
14 | 杨新民.世界上最小的嵌入式惯导/GPS组合导航系统H—764G的鉴定[J].惯导与仪表,1997,(4):31-42 |
YANG X M. Identification of the world’s smallest embedded inertial/GPS integrated navigation system H-764G[J]. Inertial Navigation and Instrumentation,1997,(4):31-42 | |
15 | 刘基余. GPS卫星导航定位原理与方法[M]. 北京: 科学出版社, 2003. |
LIU J Y. Principle and method of GPS satellite navigation and positioning[M]. Beijing: Science Press, 2003 (in Chinese). | |
16 | 陈忠贵, 帅平, 曲广吉. 现代卫星导航系统技术特点与发展趋势分析[J]. 中国科学(E辑: 技术科学), 2009, 39(4): 686-695. |
CHEN Z G, SHUAI P, QU G J. Analysis of technical characteristics and development trend of modern satellite navigation system[J]. Science in China (Series E (Technological Sciences)), 2009, 39(4): 686-695 (in Chinese). | |
17 | 方群. 卫星定位导航基础[M]. 西安: 西北工业大学出版社, 1999. |
FANG Q. Fundamentals of satellite positioning and navigation[M]. Xi’an: Northwestern Polytechnical University Press, 1999 (in Chinese). | |
18 | 武珺, 刘春保, 李俊博. 2021年国外导航卫星系统发展综述[J]. 国际太空, 2022(2): 38-41. |
WU J, LIU C B, LI J B. Overview of the development of foreign navigation satellite systems in 2021[J]. Space International, 2022(2): 38-41 (in Chinese). | |
19 | 过静珺, 卢建刚, 吴卫峰, 等. 欧洲伽利略导航系统的发展[J]. 测绘通报, 2002(2): 51-52. |
GUO J J, LU J G, WU W F, et al. Development of Galileo navigation system in Europe[J]. Bulletin of Surveying and Mapping, 2002(2): 51-52 (in Chinese). | |
20 | 李航, 蔡群, 王林强. 俄罗斯GLONASS导航系统的现状与未来[J]. 外军信息战, 2010(3): 42-46. |
LI H, CAI Q, WANG L Q. Current situation and future of GIONASS navigation system in Russia[J]. Foreign Military Information Warfare, 2010(3): 42-46 (in Chinese). | |
21 | 李建文. GLONASS卫星导航系统及GPS/GLONASS组合应用研究[D]. 郑州: 解放军信息工程大学, 2001. |
LI J W. Research on GLONASS satellite navigation system and GPS/GLONASS combined application[D].Zhengzhou: PLA Information Engineering University, 2001 (in Chinese). | |
22 | WEIIENHOF B H, LICHTENEGGER H, WASLE E. 全球卫星导航系统: GPS, GLONASS, Galileo及其他系统[M]. 程鹏飞, 译. 北京: 测绘出版社, 2009. |
WEIIENHOF B H, LICHTENEGGER H, WASLE E. GNSS-Global navigation satellite systems[M]. CHENG P F, translated. Beijing: Sino Maps Press, 2009 (in Chinese). | |
23 | 刘建业, 冷雪飞, 熊智, 等. 惯性组合导航系统的实时多级景象匹配算法[J]. 航空学报, 2007, 28(6): 1401-1407. |
LIU J Y, LENG X F, XIONG Z, et al. Real-time multi-level scene matching algorithm for inertial integrated navigation system[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(6): 1401-1407 (in Chinese). | |
24 | 熊智, 刘建业, 曾庆化, 等. 景像匹配辅助导航系统中的图像匹配算法研究[J]. 中国图象图形学报, 2004, 9(1): 29-34. |
XIONG Z, LIU J Y, ZENG Q H, et al. The study of image matching algorithm for scene matching aided navigation system[J]. Journal of Image and Graphics, 2004, 9(1): 29-34. (in Chinese) | |
25 | 赵锋伟. 景象匹配算法、性能评估及其应用[D]. 长沙: 中国人民解放军国防科学技术大学, 2002. |
ZHAO F W. Scene matching algorithm, performance evaluation and its application[D].Changsha: National University of Defense Technology, 2002 (in Chinese). | |
26 | 陈苗海. 机载光电导航瞄准系统的应用和发展概况[J]. 电光与控制, 2003, 10(4): 42-46, 53. |
CHEN M H. Airborne EO targeting & navigation system application and its development[J]. Electronics Optics & Control, 2003, 10(4): 42-46, 53 (in Chinese). | |
27 | 马涛,胡小平,练军想,等.仿生导航技术研究综述[C].∥洛阳惯性技术学会2014年学术年会论文集. 洛阳: 洛阳惯性技术学会, 2014:21-29 |
MA T, HU X P, LIAN J X,etc. A Review of Biomimetic Navigation Technology Research [C].∥ Proceedings of the 2014 Academic Annual Meeting of Luoyang Inertial Technology Society. Luoyang: Inertial Navigation and Instrumentation Luoyang Inertial Technology Society, 2014: 21-29 | |
28 | 王耀南, 李树涛. 多传感器信息融合及其应用综述[J]. 控制与决策, 2001, 16(5): 518-522. |
WANG Y N, LI S T. Multisensor information fusion and its application: A survey[J]. Control and Decision, 2001, 16(5): 518-522 (in Chinese). | |
29 | 申功勋, 孙建峰. 信息融合理论在惯性/天文/GPS组合导航系统中的应用[M]. 北京: 国防工业出版社, 1998. |
SHEN G X, SUN J F. The application of information fusion theory in INS/CNS/GPS integrated navigation system[M]. Beijing: National Defense Industry Press, 1998 (in Chinese). | |
30 | 王慧哲, 曾庆化, 刘建业, 等. 基于因子图的无人机全源导航关键技术研究[J]. 导航与控制, 2017, 16(2): 1-5. |
WANG H Z, ZENG Q H, LIU J Y, et al. Research on the key technology of UAV of all source position navigation based on factor graph[J]. Navigation and Control, 2017, 16(2): 1-5 (in Chinese). | |
31 | 刘春保. 美国打造新的军用“全源导航”[J]. 国际太空, 2013(4): 46-49. |
LIU C B. The United States builds a new military “all-source navigation”[J]. Space International, 2013(4): 46-49 (in Chinese). | |
32 | 陈颖,马忠孝,贺峻峰.全源定位与导航技术发展概况和应用展望[C]∥洛阳惯性技术学会2015年学术年会论文集.洛阳: 洛阳惯性技术学会, 2015: 144-147. |
CHEN Y, MA Z X, HE J F. Development survey and application outlook in all source position and navigation [C]∥ Proceedings of the 2015 Academic Annual Meeting of Luoyang Inertial Technology Society. Luoyang: Luoyang Inertial Technology Society, 2015: 144-147. | |
33 | 郑峰婴. 舰载机着舰引导技术研究[D]. 南京: 南京航空航天大学, 2007. |
ZHENG F Y. Research on carrier landing technology[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007 (in Chinese). | |
34 | 周煜, 伍逸夫, 赵峰. 航母着舰引导系统概述[J]. 舰船电子工程, 2011, 31(11): 22-24, 36. |
ZHOU Y, WU Y F, ZHAO F. Review on the landing vectoring system of aircraft carrier[J]. Ship Electronic Engineering, 2011, 31(11): 22-24, 36 (in Chinese). | |
35 | 戴文正. 无人直升机自主着舰引导与控制技术研究[D]. 南京: 南京航空航天大学, 2014. |
DAI W Z. Guidance and control of autonomous helicopter ship landing[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014 (in Chinese). | |
36 | 董新民, 徐跃鉴, 陈博. 自动空中加油技术研究进展与关键问题[J]. 空军工程大学学报(自然科学版), 2008, 9(6): 1-5. |
DONG X M, XU Y J, CHEN B. Progress and challenges in automatic aerial refueling[J]. Journal of Air Force Engineering University (Natural Science Edition), 2008, 9(6): 1-5 (in Chinese). | |
37 | 钦庆生. 飞行管理计算机系统[M]. 北京: 国防工业出版社, 1991. |
QIN Q S. Flight management computer system[M]. Beijing: National Defense Industry Press, 1991 (in Chinese). | |
38 | 罗巧云. 第五代战斗机在未来空战中的应用[J]. 国防科技, 2017, 38(4): 57-62. |
LUO Q Y. Review on the operational application of the fifth generation fighter in future air combat[J]. National Defense Science & Technology, 2017, 38(4): 57-62 (in Chinese). | |
39 | BAE J. A review of electric actuation and flight control system for more/all electric aircraft[C]∥ 2021 24th International Conference on Electrical Machines and Systems (ICEMS). Piscataway: IEEE Press, 2021: 1943-1947. |
40 | KIM N H, AN D, CHOI J H. Prognostics and health management of engineering systems[M]. Cham: Springer International Publishing, 2017. |
41 | HARRIS J J. F-35 flight control law design, development and verification: AIAA-2018-3516[R]. Reston: AIAA, 2018. |
42 | MALISANI S, CAPELLO E. Modeling framework for dynamic wing loads and control design of a flexible aircraft: AIAA-2021-0117[R]. Reston: AIAA, 2021. |
43 | SINGH L, MIOTTO P, BREGER L S. L1 adaptive control design for improved handling of the F/A-18 class of aircraft: AIAA-2013-5236[R]. Reston: AIAA, 2013. |
44 | AVANZINI G, CAPELLO E, PIACENZA I, et al. L1 adaptive control of flexible aircraft: Preliminary results: AIAA-2010-7501[R]. Reston: AIAA, 2010. |
45 | 蔡琰. 国外射流飞行控制技术发展及前景分析[J]. 航空科学技术, 2020, 31(1): 85-86. |
CAI Y. Development and prospect analysis of jet flight control technology abroad[J]. Aeronautical Science & Technology, 2020, 31(1): 85-86 (in Chinese). | |
46 | MEYER D, LARSEN M. Nuclear magnetic resonance gyro for inertial navigation[J]. Gyroscopy and Navigation, 2014, 5(2): 75-82. |
47 | SAVOIE D, ALTORIO M, FANG B, et al. Interleaved atom interferometry for high sensitivity inertial measurements[C]∥ 2019 Joint Conference of the IEEE International Frequency Control Symposium and European Frequency and Time Forum (EFTF/IFC). Piscataway: IEEE Press, 2019: 1-3. |
48 | WU X J, PAGEL Z, MALEK B S, et al. Gravity surveys using a mobile atom interferometer[J]. Science Advances, 2019, 5(9): eaax0800. |
49 | Vanthuyne T, Potini A, Looringhe G D C D,et al. Electro-mechanical thrust vector control systems for the VEGA-C launcher[C]∥IAF Space Systems Symposium;International Astronautical Congress.2020 |
50 | MECROW B C, JACK A G, ATKINSON D J, et al. Design and testing of a four-phase fault-tolerant permanent-magnet machine for an engine fuel pump[J]. IEEE Transactions on Energy Conversion, 2004, 19(4): 671-678. |
51 | ATKINSON G J, MECROW B C, JACK A G, et al. The design of fault tolerant machines for aerospace applications[C]∥ IEEE International Conference on Electric Machines and Drives. Piscataway: IEEE Press, 2005: 1863-1869. |
52 | WANG B, WANG J B, GRIFFO A, et al. Investigation into fault-tolerant capability of a triple redundant PMA SynRM drive[J]. IEEE Transactions on Power Electronics, 2019, 34(2): 1611-1621. |
53 | ZHAO K C, CHU J K, WANG T C, et al. A novel angle algorithm of polarization sensor for navigation[J]. IEEE Transactions on Instrumentation and Measurement, 2009, 58(8): 2791-2796. |
54 | FAN C, HU X P, LIAN J X, et al. Design and calibration of a novel camera-based bio-inspired polarization navigation sensor[J]. IEEE Sensors Journal, 2016, 16(10): 3640-3648. |
55 | 曹昭睿, 郝永平, 刘万成, 等. 紧凑折反式仿生复眼及图像快速拼接识别算法[J]. 兵工学报, 2022, 43(8): 1845-1857. |
CAO Z R, HAO Y P, LIU W C, et al. Compact catadioptric bionic compound eye and fast image mosaic recognition algorithm[J]. Acta Armamentarii, 2022, 43(8): 1845-1857 (in Chinese). | |
56 | LIU X, YANG J A, GUO L, et al. Design and calibration model of a bioinspired attitude and heading reference system based on compound eye polarization compass[J]. Bioinspiration & Biomimetics, 2021, 16(1): 016001. |
57 | WANG S P, QIU Z B, HUANG P P, et al. A bioinspired navigation system for multirotor UAV by integrating polarization compass/magnetometer/INS/GNSS[J]. IEEE Transactions on Industrial Electronics, 2023, 70(8): 8526-8536. |
58 | YANG Y T, WANG Y, YU X A, et al. Moonlit polarized skylight-aided INS/CNS: An enhanced attitude determination method[J]. Control Engineering Practice, 2023, 132: 105408. |
59 | 吴文海, 高阳, 汪节. 飞行控制系统的发展历程、现状与趋势[J]. 飞行力学, 2018, 36(4): 1-5, 10. |
WU W H, GAO Y, WANG J. Development course, status and trend of flight control system[J]. Flight Dynamics, 2018, 36(4): 1-5, 10 (in Chinese). | |
60 | 李哲.大型运输机飞控系统可靠性设计技术分析[C]∥大型飞机关键技术高层论坛暨中国航空学会2007年年会论文集. 北京: 中国航空学会, 2007: 415-420. |
LI Z. Analysis of reliability design technology for flight control system of large transport aircraft[C]∥ Proceedings of the Key Technologies Forum for Large Aircraft and the 2007 Annual Meeting of the Chinese Aviation Society. Beijing: Chinese Aviation Society, 2007: 415-420. | |
61 | 占正勇, 刘林. 控制分配在复杂飞行控制系统中的应用设计[J]. 飞行力学, 2006, 24(2): 73-76, 85. |
ZHAN Z Y, LIU L. Implementation of control allocation in flight control with multi-effectors[J]. Flight Dynamics, 2006, 24(2): 73-76, 85 (in Chinese). | |
62 | 李冀鑫, 侯志强, 徐彦军. 基于总能量理论的着舰飞行/推力控制系统[J]. 飞行力学, 2010, 28(2): 35-38. |
LI J X, HOU Z Q, XU Y J. Integrated carrier landing flight/thrust control system based on total energy theory[J]. Flight Dynamics, 2010, 28(2): 35-38 (in Chinese). | |
63 | 范超, 赵琳, 段海军. 航空数据总线技术研究[J]. 信息技术与信息化, 2022(4): 160-163. |
FAN C, ZHAO L, DUAN H J. Research on aviation data bus technology[J]. Information Technology and Informatization, 2022(4): 160-163 (in Chinese). | |
64 | 夏立群, 张新国. 直接驱动阀式伺服作动器研究[J]. 西北工业大学学报, 2006, 24(3): 308-312. |
XIA L Q, ZHANG X G. Development of DDV(direct drive valve) servo actuator[J]. Journal of Northwestern Polytechnical University, 2006, 24(3): 308-312 (in Chinese). | |
65 | 魏毅寅, 郝明瑞, 范宇. 人工智能技术在宽域飞行器控制中的应用[J]. 宇航学报, 2023, 44(4): 530-537. |
WEI Y Y, HAO M R, FAN Y. The application of artificial intelligence technology in wide-field vehicle control[J]. Journal of Astronautics, 2023, 44(4): 530-537 (in Chinese). | |
66 | 马卫华. 导弹/火箭制导、导航与控制技术发展与展望[J]. 宇航学报, 2020, 41(7): 860-867. |
MA W H. Review and prospect of missile/launch vehicle guidance, navigation and control technologies[J]. Journal of Astronautics, 2020, 41(7): 860-867 (in Chinese). | |
67 | 杨涛, 杨博, 殷允强, 等. 多智能体系统协同控制与优化专刊序言[J]. 控制与决策, 2023, 38(5): 1153-1158. |
YANG T, YANG B, YIN Y Q, et al. Guest editorial of special issue on cooperative control and optimization for multi-agent systems[J]. Control and Decision, 2023, 38(5): 1153-1158 (in Chinese). | |
68 | 李文革, 黄晓利, 谢世富. 导航战在信息化战争中的作用[J]. 信息与电子工程, 2004, 2(2): 153-156. |
LI W G, HUANG X L, XIE S F. Navwar in information operations[J]. Information and Electronic Engineering, 2004, 2(2): 153-156 (in Chinese). | |
69 | 马海宁, 潘颜楠, 孙志. 基于欺骗干扰技术的导航对抗新途径[J]. 指挥控制与仿真, 2021, 43(4): 128-133. |
MA H N, PAN Y N, SUN Z. A new way of navigation countermeasure based on GPS spoofing attacks[J]. Command Control & Simulation, 2021, 43(4): 128-133 (in Chinese). | |
70 | 杨元喜. 综合PNT体系及其关键技术[J]. 测绘学报, 2016, 45(5): 505-510. |
YANG Y X. Concepts of comprehensive PNT and related key technologies[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(5): 505-510 (in Chinese). | |
71 | 王巍, 孟凡琛, 阚宝玺. 国家综合PNT体系下的多源自主导航系统技术[J]. 导航与控制, 2022, 21(S1): 1-10. |
WANG W, MENG F C, KAN B X. Multi-source autonomous navigation system technology under national comprehensive PNT system[J]. Navigation and Control, 2022, 21(S1): 1-10 (in Chinese). | |
72 | 卞鸿巍, 许江宁, 何泓洋, 等. 国家综合PNT体系弹性概念[J]. 武汉大学学报(信息科学版), 2021, 46(9): 1265-1272. |
BIAN H W, XU J N, HE H Y, et al. The concept of resilience of national comprehensive PNT system[J]. Geomatics and Information Science of Wuhan University, 2021, 46(9): 1265-1272 (in Chinese). | |
73 | 杨昆, 康戈文, 李洪. 重力场和地磁场综合匹配在导航中的运用[J]. 船海工程, 2010, 39(1): 129-131. |
YANG K, KANG G W, LI H. Application of gravity and geomagnetism matching in navigation[J]. Ship & Ocean Engineering, 2010, 39(1): 129-131 (in Chinese). | |
74 | 黄高明, 景桐, 田威. 机会信号导航综述[J]. 控制与决策, 2019, 34(6): 1121-1131. |
HUANG G M, JING T, TIAN W. Survey on navigation via signal of opportunity[J]. Control and Decision, 2019, 34(6): 1121-1131 (in Chinese). | |
75 | 冯云皓. 低地球轨道卫星导航的当前能力与未来展望[J]. 防务视点, 2017(S1): 118-119. |
FENG Y H. Current ability and future prospect of satellite navigation in low earth orbit[J]. Defense Point, 2017(S1): 118-119 (in Chinese). | |
76 | ZHOU Y B, LAI J, GUO X Y, et al. A research on all source navigation and positioning and its critical technology[C]∥China Satellite Navigation Conference (CSNC) 2015 Proceedings: Volume III. Berlin: Springer, 2015: 801-808. |
77 | 宋丽君, 薛连莉, 董燕琴, 等. 全源定位与导航的发展与建议[J]. 导航与控制, 2017, 16(6): 99-105, 24. |
SONG L J, XUE L L, DONG Y Q, et al. Development and suggestions of all sources position and navigation[J]. Navigation and Control, 2017, 16(6): 99-105, 24 (in Chinese). | |
78 | 雷宏杰, 姚呈康. 面向军事应用的航空人工智能技术架构研究[J]. 导航定位与授时, 2020, 7(1): 1-11. |
LEI H J, YAO C K. Technical architecture of aviation artificial intelligence for military application[J]. Navigation Positioning and Timing, 2020, 7(1): 1-11 (in Chinese). | |
79 | 樊会涛, 闫俊. 空战体系的演变及发展趋势[J]. 航空学报, 2022, 43(10): 527397. |
FAN H T, YAN J. Evolution and development trend of air combat system[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527397 (in Chinese). | |
80 | 孙聪. 从空战制胜机理演变看未来战斗机发展趋势[J]. 航空学报, 2021, 42(8): 525826. |
SUN C. Development trend of future fighter: A review of evolution of winning mechanism in air combat[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525826 (in Chinese). | |
81 | 柳文林, 潘子双, 韩维, 等. 有人/无人机协同作战运用研究现状与展望[J]. 海军航空大学学报, 2022, 37(3): 231-241. |
LIU W L, PAN Z S, HAN W, et al. Research review and prospect on the application of manned/unmanned aerial vehicle cooperative combat[J]. Journal of Naval Aviation University, 2022, 37(3): 231-241 (in Chinese). | |
82 | 钟赟, 姚佩阳, 张杰勇, 等. 基于HFCM的有人-无人机作战系统交互式协同决策[J]. 系统工程理论与实践, 2021, 41(10): 2748-2760. |
ZHONG Y, YAO P Y, ZHANG J Y, et al. Interactive cooperative decision-making of manned-unmanned aerial vehicle combat system based on HFCM[J]. Systems Engineering-Theory & Practice, 2021, 41(10): 2748-2760 (in Chinese). | |
83 | 雷耀麟, 丁文锐, 李雅, 等. 群体智能支撑的无人机群航路规划应用综述[J]. 无线电工程, 2023, 53(7): 1509-1519. |
LEI Y L, DING W R, LI Y, et al. Review on biological swarm intelligence algorithm in UAV path planning[J]. Radio Engineering, 2023, 53(7): 1509-1519 (in Chinese). | |
84 | 苗昊春, 刘重, 王根. 协同制导控制技术发展现状及展望[J]. 前瞻科技, 2022, 1(4): 40-54. |
MIAO H C, LIU Z, WANG G. Research status and prospects of cooperative guidance and control technology[J]. Science and Technology Foresight, 2022, 1(4): 40-54 (in Chinese). | |
85 | 张栋, 王孟阳, 唐硕. 面向任务的无人机集群自主决策技术[J]. 指挥与控制学报, 2022, 8(4): 365-377. |
ZHANG D, WANG M Y, TANG S. Autonomous decision-making technology for task-oriented UAV swarm[J]. Journal of Command and Control, 2022, 8(4): 365-377 (in Chinese). | |
86 | 高杨, 李东生, 柳向. 无人机集群协同态势觉察一致性评估[J]. 电子学报, 2019, 47(1): 190-196. |
GAO Y, LI D S, LIU X. UAV swarm cooperative situation perception consensus evaluation[J]. Acta Electronica Sinica, 2019, 47(1): 190-196 (in Chinese). | |
87 | TAKASE K. Precision rotation rate measurements with a mobile atom interferometer Ph.D. Thesis, Stanford University, Stanford, CA, USA, 2008 |
88 | LARSEN M, BULATOWICZ M. Nuclear magnetic resonance gyroscope: For DARPA’s micro-technology for positioning, navigation and timing program[C]∥ 2012 IEEE International Frequency Control Symposium Proceedings. Piscataway: IEEE Press, 2012: 1-5. |
89 | GRACE M R, GAGATSOS C N, ZHUANG Q T, et al. Quantum-enhanced fiber-optic gyroscopes using quadrature squeezing and continuous-variable entanglement[C]∥ Conference on Lasers and Electro-Optics. Washington, D.C.: Optica Publishing Group, 2020: 2160-8989. |
90 | 郑纬民. 处理人工智能应用的高性能计算机的架构和评测[J]. 重庆邮电大学学报(自然科学版), 2021, 33(2): 171-175. |
ZHENG W M. Architecture and evaluation of high-performance computers for processing artificial intelligence applications[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2021, 33(2): 171-175 (in Chinese). | |
91 | 段宇博, 边庆, 齐宇心. 机载计算机多核系统架构选择分析[J]. 长江信息通信, 2022, 35(12): 67-69. |
DUAN Y B, BIAN Q, QI Y X. Analysis on architecture selection of airborne computer multi-core system[J]. Changjiang Information & Communications, 2022, 35(12): 67-69 (in Chinese). | |
92 | 鄂金龙, 何林. 基于异构算力节点协同的高效视频分发[J]. 计算机研究与发展, 2023, 60(4): 772-785. |
E J L, HE L. Efficient video distribution based on collaboration of heterogenous computing nodes[J]. Journal of Computer Research and Development, 2023, 60(4): 772-785 (in Chinese). | |
93 | 马跃, 朱纪洪, 杨佳利. 基于时间触发通信的机载网络可靠性[J]. 计算机工程与设计, 2020, 41(5): 1201-1206. |
MA Y, ZHU J H, YANG J L. Reliability of airborne network based on time-triggered communication[J]. Computer Engineering and Design, 2020, 41(5): 1201-1206 (in Chinese). | |
94 | 王昭, 成书锋, 马小博. 综合多任务的高可靠容错计算机设计与实现[J]. 航空计算技术, 2020, 50(4): 110-112. |
WANG Z, CHENG S F, MA X B. Design and implementation of highly reliable fault-tolerant computer with integrated multi-task[J]. Aeronautical Computing Technique, 2020, 50(4): 110-112 (in Chinese). | |
95 | 吴美平, 唐康华, 任彦超, 等. 基于SiP的低成本微小型GNC系统技术[J]. 导航定位与授时, 2021, 8(6): 19-27. |
WU M P, TANG K H, REN Y C, et al. Low-cost micro navigation guidance and control system technology based on SiP[J]. Navigation Positioning and Timing, 2021, 8(6): 19-27 (in Chinese). | |
96 | 华虹, 刘鸿瑾, 李宾, 等. 一种宇航微系统SiP计算机模块的分析及设计[J]. 微电子学与计算机, 2023, 40(1): 156-164. |
HUA H, LIU H J, LI B, et al. Analysis and design of a SiP computer module for aerospace microsystem[J]. Microelectronics & Computer, 2023, 40(1): 156-164 (in Chinese). | |
97 | 王宁, 王保传, 郭国平. 硅基半导体量子计算研究进展[J]. 物理学报, 2022, 71(23): 8-19. |
WANG N, WANG B C, GUO G P. New progress of silicon-based semiconductor quantum computation[J]. Acta Physica Sinica, 2022, 71(23): 8-19 (in Chinese). | |
98 | 陈雨, 王修业, 孙芹芹, 等. 基于伺服约束的无人作战平台跟随避让控制[J]. 南京理工大学学报, 2023, 47(1): 24-32. |
CHEN Y, WANG X Y, SUN Q Q, et al. Tracing-avoidance control of unmanned combat platform based on servo constraint[J]. Journal of Nanjing University of Science and Technology, 2023, 47(1): 24-32 (in Chinese). | |
99 | 郭涛, 陈朝, 程瀚, 等. 美军的2030年制空优势项目: “下一代空中主宰”(NGAD)项目发展启示[J]. 航天电子对抗, 2022, 38(5): 50-53, 64. |
GUO T, CHEN Z, CHENG H, et al. Development of next-generation air dominance project of U.S.military for air superiority 2030[J]. Aerospace Electronic Warfare, 2022, 38(5): 50-53, 64 (in Chinese). | |
100 | TAKAHASHI M D, FUJIZAWA B T, LUSARDI J A, et al. Autonomous guidance and flight control on a partial-authority black hawk helicopter: AIAA-2020-3286[R]. Reston: AIAA, 2020. |
101 | Wigginton, Scott A, et al. Joint common architecture demonstration (JCA Demo) final report[R]. 2016 |
102 | LEVINSON R, FRANK J D, IATAURO M, et al. Development and testing of a vehicle management system for autonomous spacecraft habitat operations: AIAA-2018-5148[R]. Reston: AIAA, 2018. |
103 | GÖRKE S, RIEBELING R, KRAUS F, et al. Flexible platform approach for fly-by-wire systems[C]∥ 2013 IEEE/AIAA 32nd Digital Avionics Systems Conference (DASC). Piscataway: IEEE Press, 2014: 2C5-1. |
104 | LOVELESS A T. On TTEthernet for integrated fault-tolerant spacecraft networks: AIAA-2015-4526[R]. Reston: AIAA, 2015. |
105 | FLETCHER M. Design to cost methods to lower the avionics cost for nasa commercial crew efforts: AIAA-2010-8916[R]. Reston: AIAA, 2010. |
106 | RASCHELLÀ A, BOUHAFS F, MACKAY M, et al. Smart access point selection for dense WLANs: A use-case[C]∥ 2018 IEEE Wireless Communications and Networking Conference (WCNC). Piscataway: IEEE Press, 2018: 1-6. |
107 | 程林, 蒋方华, 李俊峰. 深度学习在飞行器动力学与控制中的应用研究综述[J]. 力学与实践, 2020, 42(3): 267-276. |
CHENG L, JIANG F H, LI J F. A review on the applications of deep learning in aircraft dynamics and control[J]. Mechanics in Engineering, 2020, 42(3): 267-276 (in Chinese). | |
108 | XU J E, DU T, FOSHEY M, et al. Learning to fly[J]. ACM Transactions on Graphics, 2019, 38(4): 1-12. |
109 | 褚思真, 万劲波. 创新链产业链的融合机制与路径研究[J]. 创新科技, 2022, 22(10): 41-51. |
CHU S Z, WAN J B. Research on the integration mechanism and path of innovation chain and industry chain[J]. Innovation Science and Technology, 2022, 22(10): 41-51 (in Chinese). | |
110 | 刘传明, 王睿, 姜常梅. 国家创新体系整体效能的理论阐释、现实挑战与实现路径[J]. 国际金融, 2023(5): 3-13. |
LIU C M, WANG R, JIANG C M. Theoretical explanation, realistic challenge and realization path of the overall efficiency of national innovation system[J]. International Finance, 2023(5): 3-13 (in Chinese). |
[1] | Wei ZHANG, Ruojun HE. Autonomous trajectory design for IoT data collection by UAV [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 329054-329054-1. |
[2] | Chunhui ZHAO, Anmeng LIU, Yang LYU, Quan PAN. A survey of resilient self-localization for UAV [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 28839-028839. |
[3] | Chao AN, Guixi HUO, Yang MENG, Changchuan XIE, Chao YANG. Aerodynamic modeling methods and influence of layout parameters for wingtip⁃hinged multi⁃body combined UAV [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 629587-629587. |
[4] | Xudong LUO, Yiquan WU, Jinlin CHEN. Research progress on deep learning methods for object detection and semantic segmentation in UAV aerial images [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 28822-028822. |
[5] | Haifeng WANG. Key technologies in collaborative airframe⁃engine design for high performance fighters [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529978-529978. |
[6] | Gaojie ZHENG, Xiaoming HE, Dongpo LI, Huijun TAN, Kun WANG, Zhenlong WU, Depeng WANG. Double 90° deflection inlet/volute coupling flow characteristics of tail-powered unmanned aerial vehicle [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 128782-128782. |
[7] | Qingrui ZHANG, Yunyun LIU, Huijie SUN, Bo ZHU. Robust cooperative tracking control for close formation of fixed⁃wing unmanned aerial vehicles [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 629233-629233. |
[8] | Hongzhen GUO, Mou CHEN, Yongdong DAI, Maofei WANG. Distributed adaptive event⁃triggered formation control for QUAVs [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729917-729917. |
[9] | Kunda LIU, Xueming LIU, Bo ZHU, Qingrui ZHANG. Robust safe control for multi⁃UAV formation flight through narrow corridors [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729768-729768. |
[10] | Lu ZHUANG, Zhong LU, Haijing SONG, Li DONG, Yuting WU, Jia ZHOU. Safety analysis for fly⁃by⁃wire system based on fault injection model [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(9): 327329-327329. |
[11] | An ZHANG, Mi YANG, Wenhao BI, Baichuan ZHANG, Yunong WANG. Task allocation of heterogeneous multi-UAVs in uncertain environment based on multi-strategy integrated GWO [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(8): 327115-327115. |
[12] | Guotao MAO, Tianmin DENG, Nanjing YU. Object detection in UAV images based on multi-scale split attention [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 326738-326738. |
[13] | Liang ZHANG, Danyu LI, Naigang CUI, Yuan LI. Full flight profile prescribed performance control for vertical take-off and vertical landing reusable launch vehicle [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 628103-628103. |
[14] | Weimin BAO. A review of reusable launch vehicle technology development [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 629555-629555. |
[15] | Xinyu ZHANG, Siyu XIE, Yang TAO, Gun LI. A robust control method for close formation of aerial-refueling UAVs [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(20): 628425-628425. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341