Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (8): 28802-028802.doi: 10.7527/S1000-6893.2023.28802
• Reviews • Previous Articles Next Articles
Hongwei QIAO, Jianhan LIANG(), Lin ZHANG, Mingbo SUN, Yuqiao CHEN
Received:
2023-04-03
Revised:
2023-05-04
Accepted:
2023-05-12
Online:
2024-04-25
Published:
2023-05-15
Contact:
Jianhan LIANG
E-mail:jhleon@vip.sina.com
Supported by:
CLC Number:
Hongwei QIAO, Jianhan LIANG, Lin ZHANG, Mingbo SUN, Yuqiao CHEN. Research progress of probability density function approach in supersonic combustion[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 28802-028802.
1 | SELEZNEV R K, SURZHIKOV S T, SHANG J S. A review of the scramjet experimental data base[J]. Progress in Aerospace Sciences, 2019, 106: 43-70. |
2 | 崔兴达. 超声速气流中低频燃烧振荡问题研究[D]. 长沙: 国防科学技术大学, 2014. |
CUI X D. Investigations on low frequency combustion oscillations in supersonic flow[D].Changsha: National University of Defense Technology, 2014 (in Chinese). | |
3 | CHEN C P, GAO T Y, LIANG J H. Separation induced low-frequency unsteadiness in a supersonic combustor with single-side expansion[J]. Physics of Fluids, 2019, 31(5): 056103. |
4 | 赵国焱. 超声速气流中火焰闪回诱发与火焰传播机制研究[D]. 长沙: 国防科技大学, 2019. |
ZHAO G Y. On the excitation of flame flashback and flame propagation mechanism in supersonic flow [D]. Changsha: National University of Defense Technology, 2019 (in Chinese). | |
5 | FRY R S. A century of ramjet propulsion technology evolution[J]. Journal of Propulsion and Power, 2004, 20(1): 27-58. |
6 | BARNES F W, SEGAL C. Cavity-based flameholding for chemically-reacting supersonic flows[J]. Progress in Aerospace Sciences, 2015, 76: 24-41. |
7 | SLOTNICK J, KHODADOUST A, ALONSO J, et al. CFD Vision 2030 Study: A path to revolutionary computational aerosciences: NASA/CR-2014-218178[R]. Washington, D.C.: NASA, 2014. |
8 | POTTURI A S, EDWARDS J R. Hybrid large-eddy/Reynolds-averaged Navier-Stokes simulations of flow through a model scramjet[J]. AIAA Journal, 2014, 52(7): 1417-1429. |
9 | MOULE Y, SABELNIKOV V, MURA A. Highly resolved numerical simulation of combustion in supersonic hydrogen-air coflowing jets[J]. Combustion and Flame, 2014, 161(10): 2647-2668. |
10 | PIERCE C D, MOIN P. Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion[J]. Journal of Fluid Mechanics, 2004, 504: 73-97. |
11 | FOX R O. Computational models for turbulent reacting flows[M]. Cambridge: Cambridge University Press, 2003. |
12 | POPE S B. Small scales, many species and the manifold challenges of turbulent combustion[J]. Proceedings of the Combustion Institute, 2013, 34(1): 1-31. |
13 | MENTER F R. Review of the shear-stress transport turbulence model experience from an industrial perspective[J]. International Journal of Computational Fluid Dynamics, 2009, 23(4): 305-316. |
14 | NONOMURA T, FUJII K. Characteristic finite-difference WENO scheme for multicomponent compressible fluid analysis: Overestimated quasi-conservative formulation maintaining equilibriums of velocity, pressure, and temperature[J]. Journal of Computational Physics, 2017, 340: 358-388. |
15 | HICKEL S, EGERER C P, LARSSON J. Subgrid-scale modeling for implicit large eddy simulation of compressible flows and shock-turbulence interaction[J]. Physics of Fluids, 2014, 26(10): 106101. |
16 | HAWORTH D C. Progress in probability density function methods for turbulent reacting flows[J]. Progress in Energy and Combustion Science, 2010, 36(2): 168-259. |
17 | 杨越, 游加平, 孙明波. 超声速燃烧数值模拟中的湍流与化学反应相互作用模型[J]. 航空学报, 2015, 36(1): 261-273. |
YANG Y, YOU J P, SUN M B. Modeling of turbulence-chemistry interactions in numerical simulations of supersonic combustion[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 261-273 (in Chinese). | |
18 | POPE S B. PDF methods for turbulent reactive flows[J]. Progress in Energy and Combustion Science, 1985, 11(2): 119-192. |
19 | HAWORTH D C, TAHRY S H EL. Probability density function approach for multidimensional turbulent flow calculations with application to in-cylinder flows in reciprocating engines[J]. AIAA Journal, 1991, 29: 208-218. |
20 | ZHANG L, LIANG J H, SUN M B, et al. An energy-consistency-preserving large eddy simulation-scalar filtered mass density function (LES-SFMDF) method for high-speed flows[J]. Combustion Theory and Modelling, 2018, 22(1): 1-37. |
21 | YALDIZLI M, MEHRAVARAN K, JABERI F A. Large-eddy simulations of turbulent methane jet flames with filtered mass density function[J]. International Journal of Heat and Mass Transfer, 2010, 53(11-12): 2551-2562. |
22 | GUAN Q D, LIANG J H, SUN M B, et al. Large eddy simulation of supersonic mixing layers using a compressible filtered mass density function method[J]. Aerospace Science and Technology, 2022, 124: 107425. |
23 | 黄立航, 朱旻明, 叶桃红. 改进密度耦合的稀疏拉格朗日FDF方法模拟Sandia火焰E[J]. 中国科学技术大学学报, 2020, 50(5): 589-595, 604. |
HUANG L H, ZHU M M, YE T H. Sparse-Lagrangian FDF simulation of Sandia flame E with modified density coupling[J]. Journal of University of Science and Technology of China, 2020, 50(5): 589-595, 604 (in Chinese). | |
24 | TANG Q, ZHAO W, BOCKELIE M, et al. Multi-environment probability density function method for modelling turbulent combustion using realistic chemical kinetics[J]. Combustion Theory and Modelling, 2007, 11(6): 889-907. |
25 | SCHWARTZENTRUBER T E, BOYD I D. Progress and future prospects for particle-based simulation of hypersonic flow[J]. Progress in Aerospace Sciences, 2015, 72: 66-79. |
26 | ROWINSKI D H, POPE S B. Computational study of lean premixed turbulent flames using RANSPDF and LESPDF methods[J]. Combustion Theory and Modelling, 2013, 17(4): 610-656. |
27 | YANG Y, WANG H F, POPE S B, et al. Large-eddy simulation/probability density function modeling of a non-premixed CO/H2 temporally evolving jet flame[J]. Proceedings of the Combustion Institute, 2013, 34(1): 1241-1249. |
28 | POPE S B. Mapping closures for turbulent mixing and reaction[J]. Theoretical and Computational Fluid Dynamics, 1991, 2(5): 255-270. |
29 | 关清帝. 一般曲线坐标系下拉格朗日PDF方法及其在超声速燃烧中的应用研究[D]. 长沙: 国防科技大学, 2022. |
GUAN Q D. A study of the Lagrangian PDF method in a general curvilinear coordinate system and its application to supersonic combustion[D]. Changsha: National University of Defense Technology, 2022 (in Chinese). | |
30 | 范周琴, 孙明波, 刘卫东. 湍流燃烧的概率密度函数输运方程模型研究[J]. 飞航导弹, 2010(5): 90-95. |
FAN Z Q, SUN M B, LIU W D. Study on transport equation model of probability density function for turbulent combustion[J]. Aerodynamic Missile Journal, 2010(5): 90-95 (in Chinese). | |
31 | 刘亚明, 柳朝晖, 贺铸, 等. 湍流被动标量研究的最新进展[J]. 力学进展, 2005, 35(4): 549-558. |
LIU Y M, LIU Z H, HE Z, et al. Recent progress in statistics of turbulent passive scalar[J]. Advances in Mechanics, 2005, 35(4): 549-558 (in Chinese). | |
32 | CELIS C, FIGUEIRA DA SILVA L F. Lagrangian mixing models for turbulent combustion: Review and prospects[J]. Flow, Turbulence and Combustion, 2015, 94(3): 643-689. |
33 | 任祝寅, 解青, 杨天威, 等. 输运概率密度函数中的小尺度标量混合建模[J]. 空气动力学学报, 2020, 38(3): 501-514. |
REN Z Y, XIE Q, YANG T W, et al. Micromixing models for transported PDF simulation of turbulent combustion[J]. Acta Aerodynamica Sinica, 2020, 38(3): 501-514 (in Chinese). | |
34 | GONZALEZ-JUEZ E D, KERSTEIN A R, RANJAN R, et al. Advances and challenges in modeling high-speed turbulent combustion in propulsion systems[J]. Progress in Energy and Combustion Science, 2017, 60: 26-67. |
35 | PANT T, JAIN U, WANG H F. Transported PDF modeling of compressible turbulent reactive flows by using the Eulerian Monte Carlo fields method[J]. Journal of Computational Physics, 2021, 425: 109899. |
36 | GIVI P. Model-free simulations of turbulent reactive flows[J]. Progress in Energy and Combustion Science, 1989, 15(1): 1-107. |
37 | BOGER M, VEYNANTE D, BOUGHANEM H, et al. Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion[J]. Symposium (International) on Combustion, 1998, 27(1): 917-925. |
38 | COLUCCI P J, JABERI F A, GIVI P, et al. Filtered density function for large eddy simulation of turbulent reacting flows[J]. Physics of Fluids, 1998, 10(2): 499-515. |
39 | JABERI F A, COLUCCI P J, JAMES S, et al. Filtered mass density function for large-eddy simulation of turbulent reacting flows[J]. Journal of Fluid Mechanics, 1999, 401: 85-121. |
40 | BORGHI R. Turbulent combustion modelling[J]. Progress in Energy and Combustion Science, 1988, 14(4): 245-292. |
41 | SUBRAMANIAM S, POPE S B. A mixing model for turbulent reactive flows based on Euclidean minimum spanning trees[J]. Combustion and Flame, 1998, 115(4): 487-514. |
42 | DOPAZO C. Relaxation of initial probability density functions in the turbulent convection of scalar fields[J]. Physics of Fluids, 1979, 22(1): 20-30. |
43 | DEVAUD C B, STANKOVIĆ I, MERCI B. Deterministic Multiple Mapping Conditioning (MMC) applied to a turbulent flame in Large Eddy Simulation (LES)[J]. Proceedings of the Combustion Institute, 2013, 34(1): 1213-1221. |
44 | WANDEL A P, LINDSTEDT R P. Hybrid multiple mapping conditioning modeling of local extinction[J]. Proceedings of the Combustion Institute, 2013, 34(1): 1365-1372. |
45 | MEYER D W, JENNY P. A mixing model for turbulent flows based on parameterized scalar profiles[J]. Physics of Fluids, 2006, 18(3): 35105. |
46 | MEYER D W. A new particle interaction mixing model for turbulent dispersion and turbulent reactive flows[J]. Physics of Fluids, 2010, 22(3): 35103. |
47 | CAI J, WANG D H, TONG C N, et al. Investigation of subgrid-scale mixing of mixture fraction and temperature in turbulent partially premixed flames[J]. Proceedings of the Combustion Institute, 2009, 32(1): 1517-1525. |
48 | WANG D H, TONG C N, BARLOW R S, et al. Experimental study of scalar filtered mass density function in turbulent partially premixed flames[J]. Proceedings of the Combustion Institute, 2007, 31(1): 1533-1541. |
49 | YU C K, BYKOV V, MAAS U. Coupling of simplified chemistry with mixing processes in PDF simulations of turbulent flames[J]. Proceedings of the Combustion Institute, 2019, 37(2): 2183-2190. |
50 | BYKOV V, GOL’DSHTEIN V, MAAS U. Simple global reduction technique based on decomposition approach[J]. Combustion Theory and Modelling, 2008, 12(2): 389-405. |
51 | 周华. 湍流预混燃烧的输运概率密度函数模拟研究[D]. 北京: 清华大学, 2017. |
ZHOU H. Transported probability density function simulations of turbulent premixed flames[D].Beijing: Tsinghua University, 2017 (in Chinese). | |
52 | BANAEIZADEH A, AFSHARI A, SCHOCK H, et al. Large-eddy simulations of turbulent flows in internal combustion engines[J]. International Journal of Heat and Mass Transfer, 2013, 60: 781-796. |
53 | ESMAEILI M, AFSHARI A, JABERI F A. Turbulent mixing in non-isothermal jet in crossflow[J]. International Journal of Heat and Mass Transfer, 2015, 89: 1239-1257. |
54 | WANG H F, POPE S B. Large eddy simulation/probability density function modeling of a turbulent CH4/H2/N2 jet flame[J]. Proceedings of the Combustion Institute, 2011, 33(1): 1319-1330. |
55 | KOMPERDA J, GHIASI Z, LI D R, et al. A hybrid discontinuous spectral element method and filtered mass density function solver for turbulent reacting flows[J]. Numerical Heat Transfer, Part B: Fundamentals, 2020, 78(1): 1-29. |
56 | TANG Q, XU J, POPE S B. Probability density function calculations of local extinction and no production in piloted-jet turbulent methane/air flames[J]. Proceedings of the Combustion Institute, 2000, 28(1): 133-139. |
57 | SHEIKHI M R H, GIVI P, POPE S B. Velocity-scalar filtered mass density function for large eddy simulation of turbulent reacting flows[J]. Physics of Fluids, 2007, 19(9): 95106. |
58 | LINDSTEDT R P, LOULOUDI S A, VÁOS E M. Joint scalar probability density function modeling of pollutant formation in piloted turbulent jet diffusion flames with comprehensive chemistry[J]. Proceedings of the Combustion Institute, 2000, 28(1): 149-156. |
59 | 王海峰, 陈义良, 刘明侯. 湍流扩散燃烧的数值研究—PDF方法和火焰面模型的性能比较[J]. 工程热物理学报, 2005, 26(S1): 241-244. |
WANG H F, CHEN Y L, LIU M H. Numerical investigation of turbulent nonpremixed combustion: Performance of PDF method and flamelet models [J]. Journal of Engineering Thermophysics, 2005, 26(S1): 241-244 (in Chinese). | |
60 | 黄庆, 朱旻明, 叶桃红, 等. PDF方法模拟钝体驻定的湍流扩散火焰[J]. 计算物理, 2008, 25(6): 733-743. |
HUANG Q, ZHU M M, YE T H, et al. PDF simulation of bluff-body stabilized turbulent non-premixed flame[J]. Chinese Journal of Computational Physics, 2008, 25(6): 733-743 (in Chinese). | |
61 | SHARMA E, DE S, CLEARY M J. LES of a lifted methanol spray flame series using the sparse Lagrangian MMC approach[J]. Proceedings of the Combustion Institute, 2021, 38(2): 3399-3407. |
62 | CARRARA M D, DESJARDIN P E. A filtered mass density function approach for modeling separated two-phase flows for LES I: Mathematical formulation[J]. International Journal of Multiphase Flow, 2006, 32(3): 365-384. |
63 | LI Z, BANAEIZADEH A, JABERI F A. Two-phase filtered mass density function for LES of turbulent reacting flows[J]. Journal of Fluid Mechanics, 2014, 760: 243-277. |
64 | GERLINGER P. Lagrangian transported MDF methods for compressible high speed flows[J]. Journal of Computational Physics, 2017, 339: 68-95. |
65 | TURKERI H, ZHAO X Y, MURADOGLU M. Large eddy simulation/probability density function modeling of turbulent swirling stratified flame series[J]. Physics of Fluids, 2021, 33(2): 025117. |
66 | VALIDI A, SCHOCK H, JABERI F. Turbulent jet ignition assisted combustion in a rapid compression machine[J]. Combustion and Flame, 2017, 186: 65-82. |
67 | MURADOGLU M, LIU K, POPE S B. PDF modeling of a bluff-body stabilized turbulent flame[J]. Combustion and Flame, 2003, 132(1-2): 115-137. |
68 | WANG L P, HAWKES E R, CHEN J H. Flame edge statistics in turbulent combustion[J]. Proceedings of the Combustion Institute, 2011, 33(1): 1439-1446. |
69 | TIRUNAGARI R R, POPE S B. LES/PDF for premixed combustion in the DNS limit[J]. Combustion Theory and Modelling, 2016, 20(5): 834-865. |
70 | TIRUNAGARI R R, POPE S B. Characterization of extinction/reignition events in turbulent premixed counterflow flames using strain-rate analysis[J]. Proceedings of the Combustion Institute, 2017, 36(2): 1919-1927. |
71 | STEINBERG A M, HAMLINGTON P E, ZHAO X Y. Structure and dynamics of highly turbulent premixed combustion[J]. Progress in Energy and Combustion Science, 2021, 85: 100900. |
72 | DRISCOLL J F, CHEN J H, SKIBA A W, et al. Premixed flames subjected to extreme turbulence: Some questions and recent answers[J]. Progress in Energy and Combustion Science, 2020, 76: 100802. |
73 | LIU Q L, BACCARELLA D, LEE T H. Review of combustion stabilization for hypersonic airbreathing propulsion[J]. Progress in Aerospace Sciences, 2020, 119: 100636. |
74 | ZEMAN O. On the decay of compressible isotropic turbulence[J]. Physics of Fluids A: Fluid Dynamics, 1991, 3(5): 951-955. |
75 | DELARUE B J, POPE S B. Calculations of subsonic and supersonic turbulent reacting mixing layers using probability density function methods[J]. Physics of Fluids, 1998, 10(2): 487-498. |
76 | MÖBUS H, GERLINGER P, BRÜGGEMANN D. Scalar and joint scalar-velocity-frequency Monte Carlo PDF simulation of supersonic combustion[J]. Combustion and Flame, 2003, 132(1-2): 3-24. |
77 | HSU A T, TSAI Y L P, RAJU M S. Probability density function approach for compressible turbulent reacting flows[J]. AIAA Journal, 1994, 32(7): 1407-1415. |
78 | BANAEIZADEH A, LI Z R, JABERI F A. Compressible scalar filtered mass density function model for high-speed turbulent flows[J]. AIAA Journal, 2011, 49(10): 2130-2143. |
79 | NIK M, GIVI P, MADNIA C, et al. EPVS-FMDF for LES of high-speed turbulent flows[C]∥ Proceedings of the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2012. |
80 | 陈志辉, 徐旭. 用简化PDF方法分析温度脉动在超声速湍流燃烧中的作用[J]. 燃烧科学与技术, 2008, 14(5): 468-473. |
CHEN Z H, XU X. Examine the effect of temperature fluctuation on supersonic combustion by assumed PDF approach[J]. Journal of Combustion Science and Technology, 2008, 14(5): 468-473 (in Chinese). | |
81 | KOO H, DONDE P, RAMAN V. LES-based Eulerian PDF approach for the simulation of scramjet combustors[J]. Proceedings of the Combustion Institute, 2013, 34(2): 2093-2100. |
82 | DONDE P, KOO H, RAMAN V. A multivariate quadrature based moment method for LES based modeling of supersonic combustion[J]. Journal of Computational Physics, 2012, 231(17): 5805-5821. |
83 | IRANNEJAD A, BANAEIZADEH A, JABERI F. Large eddy simulation of turbulent spray combustion[J]. Combustion and Flame, 2015, 162(2): 431-450. |
84 | ANSARI N, STRAKEY P A, GOLDIN G M, et al. Filtered density function simulation of a realistic swirled combustor[J]. Proceedings of the Combustion Institute, 2015, 35(2): 1433-1442. |
85 | DE ALMEIDA Y P, NAVARRO-MARTINEZ S. Large Eddy Simulation of a supersonic lifted flame using the Eulerian stochastic fields method[J]. Proceedings of the Combustion Institute, 2019, 37(3): 3693-3701. |
86 | DE ALMEIDA Y P, NAVARRO-MARTINEZ S. Large eddy simulation of supersonic combustion using the Eulerian stochastic fields method[J]. Flow, Turbulence and Combustion, 2019, 103(4): 943-962. |
87 | 张林. 高速湍流燃烧LES-TPDF方法及其应用研究[D]. 长沙: 国防科技大学, 2018. |
ZHANG L. LES-TPDF methods and their applications for high-speed turbulent combustion[D].Changsha: National University of Defense Technology, 2018 (in Chinese). | |
88 | BELJADID A, LEFLOCH P G, MISHRA S, et al. Schemes with well-controlled dissipation. Hyperbolic systems in nonconservative form[J]. Communications in Computational Physics, 2017, 21(4): 913-946. |
89 | ZHANG L, LIANG J H, SUN M B, et al. A conservative and consistent scalar filtered mass density function method for supersonic flows[J]. Physics of Fluids, 2021, 33(2): 26101. |
90 | DE ALMEIDA Y P, NAVARRO-MARTINEZ S. Joint-velocity scalar energy probability density function method for large eddy simulations of compressible flow[J]. Physics of Fluids, 2021, 33(3): 35155. |
91 | CAO R R, WANG H F, POPE S B. The effect of mixing models in PDF calculations of piloted jet flames[J]. Proceedings of the Combustion Institute, 2007, 31(1): 1543-1550. |
92 | CHEN W W, LIANG J H, ZHANG L, et al. A numerical investigation of mixing models in LES-FMDF for compressible reactive flows[J]. Energies, 2021, 14(16): 5180. |
93 | WANG H F, PANT T, ZHANG P. LES/PDF modeling of turbulent premixed flames with locally enhanced mixing by reaction[J]. Flow, Turbulence and Combustion, 2018, 100(1): 147-175. |
94 | 关清帝, 梁剑寒, 张林, 等. 一般曲线坐标系下概率密度函数方法及其在超声速燃烧中的应用[J]. 航空学报, 2023, 44(4): 126677. |
GUAN Q D, LIANG J H, ZHANG L, et al. Probability density function method in general curvilinear coordinate system and its application in supersonic combustion[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(4): 126677 (in Chinese). | |
95 | INKARBEKOV M, AITZHAN A, KALTAYEV A, et al. A GPU-accelerated filtered density function simulator of turbulent reacting flows[J]. International Journal of Computational Fluid Dynamics, 2020, 34(6): 381-396. |
96 | HUANG W, DU Z B, YAN L, et al. Flame propagation and stabilization in dual-mode scramjet combustors: A survey[J]. Progress in Aerospace Sciences, 2018, 101: 13-30. |
97 | 赵国焱, 孙明波, 吴锦水. 基于不同PDF的超声速扩散燃烧火焰面模型对比[J]. 推进技术, 2015, 36(2): 232-237. |
ZHAO G Y, SUN M B, WU J S. Comparison of supersonic diffusion combustion flamelet model based on different PDF[J]. Journal of Propulsion Technology, 2015, 36(2): 232-237 (in Chinese). | |
98 | 丁海昕, 钟诚文. 不同PDF模型在超燃冲压发动机数值模拟中的应用[J]. 航空工程进展, 2019, 10(5): 698-706. |
DING H X, ZHONG C W. Application of different PDF models for numerical simulation of scramjet[J]. Advances in Aeronautical Science and Engineering, 2019, 10(5): 698-706 (in Chinese). | |
99 | IRANNEJAD A, JABERI F A, KOMPERDA J, et al. Large eddy simulation of supersonic turbulent combustion with FMDF[C]∥ Proceedings of the 52nd Aerospace Sciences Meeting. Reston: AIAA, 2014. |
100 | KOMPERDA J, GHIASI Z, LI D R, et al. Simulation of the cold flow in a ramp-cavity combustor using a DSEM-LES/FMDF hybrid scheme[C]∥ Proceedings of the 54th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2016. |
101 | 王方, 王煜栋, 姜胜利, 等. AECSC-JASMIN湍流燃烧仿真软件研发和检验[J]. 航空学报, 2021, 42(12): 625003. |
WANG F, WANG Y D, JIANG S L, et al. Development and testing of AECSC-JASMIN turbulent combustion simulation software[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(12): 625003 (in Chinese). | |
102 | 王方, 窦力, 魏观溢, 等. 基于PDF-LES模型的凹腔支板火焰稳定器模拟[J]. 工程热物理学报, 2021, 42(3): 758-767. |
WANG F, DOU L, WEI G Y, et al. The simulation of cavity flameholder by PDF-LES method[J]. Journal of Engineering Thermophysics, 2021, 42(3): 758-767 (in Chinese). | |
103 | GIVI P. Filtered density function for subgrid scale modeling of turbulent combustion[J]. AIAA Journal, 2006, 44(1): 16-23. |
[1] | Xiaoyong LIU, Mingfu WANG, Jianwen LIU, Xin REN, Xuan ZHANG. Review and prospect of research on scramjet [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529878-529878. |
[2] | Bing WAN, Jun CHEN, Hanchen BAI. Full flow path performance design method for wide range scramjet based on equivalent thermodynamic process [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 128757-128757. |
[3] | Jianheng JI, Zun CAI, Taiyu WANG, Mingbo SUN, Zhenguo WANG. Flow and combustion process for wide speed range scramjet: Review [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(3): 28696-028696. |
[4] | Yuming ZHANG, Yuting DAI, Guangjing HUANG, Chao YANG, Shujie JIANG. Gust alleviation and aeroacoustic characteristics of flexible morphing trailing edge airfoil [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(10): 129219-129219. |
[5] | Xiang ZHAO, Zhixun XIA, Chuanbo FANG, Likun MA, Chaolong LI, Yifan DUAN. Theoretical analysis of performance of solid rocket scramjet [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 126971-126971. |
[6] | Qingdi GUAN, Jianhan LIANG, Lin ZHANG, Wenwu CHEN, Yuqiao CHEN. Probability density function method in general curvilinear coordinate system and its application in supersonic combustion [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(4): 126677-126677. |
[7] | Jiahui SONG, Aiguo XU, Long MIAO, Yugan LIAO, Fuwen LIANG, Feng TIAN, Mingqing NIE, Ningfei WANG. Entropy increase characteristics of shock wave/plate laminar boundary layer interaction [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(21): 528520-528520. |
[8] | Fangcheng SHI, Zhenxun GAO, Yuyan TIAN, Chongwen JIANG, Tiantian WANG, Chun-Hian LEE. Large eddy simulation of ideally expanded supersonic jet noise [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(2): 626266-626266. |
[9] | Mingbo SUN, Jiajian ZHU, Tiangang LUO, Qinyuan LI, Yifu TIAN, Minggang WAN, Yongchao SUN. Research progress of unsteady supersonic combustion controlled by electric excitation technology [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(15): 528787-528787. |
[10] | Zhixun XIA, Yunchao FENG, Likun MA, Binbin CHEN, Chaolong LI, Pengnian YANG, Yandong LIU, Ying QU, Kangchun ZHAO, Libei ZHAO, Penghao REN. Research progress of solid rocket scramjet combustion technology [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(15): 528793-528793. |
[11] | Ying ZHANG, Xiaoying LI, Jianan YIN, Xiaotong ZHOU. Flexible control of aircraft departure pushback time based on probabilistic taxiing time [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(10): 327452-327452. |
[12] | Binbin ZHAO, Heng ZHANG, Jie LI. Review of numerical simulation on complex separated flow of iced airfoil [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(1): 627211-627211. |
[13] | ZHANG Junduo, ZUO Qinghai, LIN Mengda, HUANG Weixi, PAN Weijun, CUI Guixiang. Numerical simulation on near-field evolution of wake vortices of ARJ21 plane with crosswind [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(5): 125043-125043. |
[14] | LI Chaolong, XIA Zhixun, MA Likun, ZHAO Xiang, LUO Zhenbing, DUAN Yifan. Experiment on performance of solid rocket scramjet [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(12): 126075-126075. |
[15] | MA Guangwei, SUN Mingbo, ZHAO Guoyan, LI Fan, LIANG Changhai, CHEN Huifeng. Simulation of scramjet with different wall temperatures and difference schemes [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(S1): 726353-726353. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341