[1] 陈冰, 郑勇, 陈张雷, 等. 临近空间高超声速飞行器天文导航系统综述[J]. 航空学报, 2020, 41(8): 623686. CHEN B, ZHENG Y, CHEN Z L, et al. A review of celestial navigation system on near space hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8): 623686 (in Chinese). [2] 左林玄, 张辰琳, 王霄, 等. 高超声速飞机动力需求探讨[J]. 航空学报, 2021, 42(8): 525798. ZUO L X, ZHANG C L, WANG X, et al. Requirement of hypersonic aircraft power[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525798 (in Chinese). [3] 王振国. 超声速气流中的火焰稳定与传播[M].北京: 科学出版社, 2015: 1-3. WANG Z G. Flame stabilization and propagation in super-sonic flow[M].Beijing: Science Press, 2015: 1-3(in Chinese). [4] BULMAN M, SIEBENHAAR A. The rebirth of round hypersonic propulsion: AIAA-2006-5035[R].Reston: AIAA, 2006. [5] PETERSON D M, BOYCE R R, WHEATLEY V. Simulations of mixing in an inlet-fueled axisymmetric scramjet[J]. AIAA Journal, 2013, 51(12): 2823-2832. [6] LANDSBERG W O, GIBBONS N N, WHEATLEY V, et al. Improving scramjet performance through flow field manipulation[J]. Journal of Propulsion and Power, 2018, 34(3): 578-590. [7] LIU Q L, BACCARELLA D, MCGANN B, et al. Experimental investigation of single jet and dual jet injection in a supersonic combustor: AIAA-2018-1363[R].Reston: AIAA, 2018. [8] 彭瀚, 黄玥, 刘晨, 等. 横向射流影响缓燃向爆震转捩过程的试验研究[J]. 航空学报, 2018, 39(2): 121412. PENG H, HUANG Y, LIU C, et al. Experimental study of effects of fluidic obstacle parameters on deflagration-to-detonation transition[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(2): 121412(in Chinese). [9] SONG W Y, LI M, CAI Y H, et al. Experimental investigation of hydrocarbon-fuel ignition in scramjet combustor[J]. Chinese Journal of Aeronautics, 2004, 17(2): 65-71. [10] 孟宇, 顾洪斌, 孙文明, 等. 微波增强滑移电弧等离子体辅助超声速燃烧[J]. 航空学报, 2020, 41(2): 123345. MENG Y, GU H B, SUN W M, et al. Microwave enhanced gliding arc plasma assisted supersonic combustion[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2): 123345(in Chinese). [11] HOU L Y, WEIGAND B, BANICA M. Effects of staged injection on supersonic mixing and combustion[J]. Chinese Journal of Aeronautics, 2011, 24(5): 584-589. [12] VANYAI T, GRIEVE S, STREET O, et al. Fundamental scramjet combustion experiments using hydrocarbon fuel[J]. Journal of Propulsion and Power, 2019, 35(5): 953-963. [13] DENMAN Z J, CHAN W Y K, BRIESCHENK S, et al. Ignition experiments of hydrocarbons in a Mach 8 shape-transitioning scramjet engine[J]. Journal of Propulsion and Power, 2016, 32(6): 1462-1471. [14] LIU Q L, BACCARELLA D, LEE T. Influences of cavity on combustion stabilization in an axisymmetric scramjet: AIAA-2019-1681[R].Reston: AIAA, 2019. [15] LI F, SUN M B, ZHU J J, et al. Scaling effects on combustion modes in a single-side expansion kerosene-fueled scramjet combustor[J]. Chinese Journal of Aeronautics, 2021, 34(5): 684-690. [16] LUO F T, SONG W Y, ZHANG Z Q, et al. Experimental and numerical studies of vitiated air effects on hydrogen-fueled supersonic combustor performance[J]. Chinese Journal of Aeronautics, 2012, 25(2): 164-172. [17] WU X Y, LI X S, DING M, et al. Experimental study on effects of fuel injection on scramjet combustor performance[J]. Chinese Journal of Aeronautics, 2007, 20(6): 488-494. [18] ZHANG X, RONA A, EDWARDS A. The effect of trailing edge geometry on cavity flow oscillation driven by a supersonic shear layer[J]. Aeronautical Journal, 1998, 102(3): 129-136. [19] JEYAKUMAR S, ASSIS S M, JAYARAMAN K. Effect of axisymmetric aft wall angle cavity in supersonic flow field[J]. International Journal of Turbo & Jet-Engines, 2018, 35(1): 29-34. [20] LIU Q L, BACCARELLA D, LANDSBERG W, et al. Cavity flameholding in an optical axisymmetric scramjet in Mach 4.5 flows[J]. Proceedings of the Combustion Institute, 2019, 37(3): 3733-3740. [21] MA G W, SUN M B, LI F, et al. Effect of fuel injection distance and cavity depth on the mixing and combustion characteristics of a scramjet combustor with a rear-wall-expansion cavity[J]. Acta Astronautica, 2021, 182: 432-445. [22] ZHAO M J, YE T H. URANS study of pulsed hydrogen jet characteristics and mixing enhancement in supersonic crossflow[J]. International Journal of Hydrogen Energy, 2019, 44(36): 20493-20503. [23] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605. [24] SMIRNOV N N, BETELIN V B, NIKITIN V F, et al. Accumulation of errors in numerical simulations of chemically reacting gas dynamics[J]. Acta Astronautica, 2015, 117: 338-355. [25] LI F, SUN M B, CAI Z, et al. Effects of additional cavity floor injection on the ignition and combustion processes in a Mach 2 supersonic flow[J]. Energies, 2020, 13(18): 4801. [26] 高天运, 梁剑寒, 孙明波, 等. 单边扩张燃烧室燃烧非对称及非稳态现象研究[J]. 推进技术, 2016, 37(3): 419-427. GAO T Y, LIANG J H, SUN M B, et al. Investigation of asymmetric and unsteady combustion in a supersonic combustor with single-side expansion[J]. Journal of Propulsion Technology, 2016, 37(3): 419-427(in Chinese). [27] YANG Y X, WANG Z G, SUN M B, et al. Numerical and experimental study on flame structure characteristics in a supersonic combustor with dual-cavity[J]. Acta Astronautica, 2015, 117: 376-389. [28] BEN-YAKAR A, HANSON R K. Cavity flame-holders for ignition and flame stabilization in scramjets: An overview[J]. Journal of Propulsion and Power, 2001, 17(4): 869-877. [29] 林旭阳, 金捷, 王方, 等. 壁温对氢燃料超燃燃烧室流动特性的影响研究[J]. 推进技术, 2020, 41(5): 1097-1102. LIN X Y, JIN J, WANG F, et al. Effects of wall temperature on flow characteristics of hydrogen fuel scramjet combustor[J]. Journal of Propulsion Technology, 2020, 41(5): 1097-1102 (in Chinese). [30] 刘强, 汪洪波, 罗振兵, 等. 超声速燃烧室壁温对流动与燃烧过程的影响分析[C]//全国第十六届分离流、漩涡和流动控制会议论文集, 2016: 225-232. LIU Q, WANG H B, LUO Z B, et al. Analysis of the influence of supersonic combustor wall temperature on flow and combustion process[C]//Proceedings of the 16th National Conference on Separated Flow, Vortex and Flow Control, 2016: 225-232 (in Chinese). [31] NEUENHAHN T, OLIVIER H. Influence of the wall temperature and the entropy layer effects on double wedge shock boundary layer interactions: AIAA-2006-8136[R].Reston: AIAA, 2006. [32] KANDA T, CHINZEI N, KUDO K, et al. Autoignited combustion testing in a water-cooled scramjet combustor[J]. Journal of Propulsion and Power, 2004, 20(4): 657-664. [33] MICKA D J, DRISCOLL J F. Combustion characteristics of a dual-mode scramjet combustor with cavity flameholder[J]. Proceedings of the Combustion Institute, 2009, 32(2): 2397-2404. |