Acta Aeronautica et Astronautica Sinica ›› 2023, Vol. 44 ›› Issue (21): 528520.doi: 10.7527/S1000-6893.2023.28520
• Articles • Previous Articles Next Articles
Jiahui SONG1,2,3, Aiguo XU2,4,5, Long MIAO1,6(
), Yugan LIAO1, Fuwen LIANG1, Feng TIAN1, Mingqing NIE1, Ningfei WANG1
Received:2023-02-01
Revised:2023-03-01
Accepted:2023-07-23
Online:2023-11-15
Published:2023-08-11
Contact:
Long MIAO
E-mail:miaolong@bit.edu.cn
Supported by:CLC Number:
Jiahui SONG, Aiguo XU, Long MIAO, Yugan LIAO, Fuwen LIANG, Feng TIAN, Mingqing NIE, Ningfei WANG. Entropy increase characteristics of shock wave/plate laminar boundary layer interaction[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(21): 528520.
| 1 | 徐旭, 陈兵, 徐大军. 冲压发动机原理及技术[M]. 北京: 北京航空航天大学出版社, 2014. |
| XU X, CHEN B, XU D J. Principle and technology of ramjet engine[M]. Beijing: Beijing University of Aeronautics and Astronautics Press, 2014 (in Chinese). | |
| 2 | 黄伟, 罗世彬, 王振国. 临近空间高超声速飞行器关键技术及展望[J]. 宇航学报, 2010, 31(5): 1259-1265. |
| HUANG W, LUO S B, WANG Z G. Key techniques and prospect of near-space hypersonic vehicle[J]. Journal of Astronautics, 2010, 31(5): 1259-1265 (in Chinese). | |
| 3 | 叶友达, 张涵信, 蒋勤学, 等. 近空间高超声速飞行器气动特性研究的若干关键问题[J]. 力学学报, 2018, 50(6): 1292-1310. |
| YE Y D, ZHANG H X, JIANG Q X, et al. Some key problems in the study of aerodynamic characteristics of near-space hypersonic vehicles[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(6): 1292-1310 (in Chinese). | |
| 4 | 孟宇鹏, 杨晖, 满延进. 高超声速进气道飞行器一体化设计技术的发展[J]. 气体物理, 2021, 6(4):66-83. |
| MENG Y P, YANG H, MAN Y J. Development of hypersonic Inlet-Vehicle integrative design technology[J]. Physics of Gases, 2021, 6(4):66-83 (in Chinese). | |
| 5 | 于达仁, 常军涛, 崔涛, 等. 超燃冲压发动机控制方法[J]. 推进技术, 2010, 31(6): 764-772. |
| YU D R, CHANG J T, CUI T, et al. Control method of scramjet engines[J]. Journal of Propulsion Technology, 2010, 31(6): 764-772 (in Chinese). | |
| 6 | 骆红朱. 复杂入口条件下超燃冲压发动机隔离段气动性能研究[D]. 南京: 南京航空航天大学, 2018. |
| LUO H Z. Flow performance study of scramjet isolator at distorted incoming flow conditions[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018 (in Chinese). | |
| 7 | HUANG W, WU H, YANG Y G, et al. Recent advances in the shock wave/boundary layer interaction and its control in internal and external flows[J]. Acta Astronautica, 2020, 174: 103-122. |
| 8 | 黄河峡. 背景激波系干扰下隔离段内激波串特性及其控制研究[D]. 南京: 南京航空航天大学, 2018. |
| HUANG H X. Behaviors of shock train in isolator with background shocks and its control [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018 (in Chinese). | |
| 9 | GUO X, SI T, ZHAI Z G, et al. Large-amplitude effects on interface perturbation growth in Richtmyer-Meshkov flows with reshock[J]. Physics of Fluids, 2022, 34(8): 082118. |
| 10 | WANG H, WANG H, ZHAI Z G, et al. Effects of obstacles on shock-induced perturbation growth[J]. Physics of Fluids, 2022, 34(8): 086112. |
| 11 | WANG W Z, WU Y, RONG M Z, et al. Theoretical computation studies for transport properties of air plasmas[J]. Acta Physica Sinica, 2012, 61(10): 105201. |
| 12 | 袁军娅, 任翔, 蔡国飙, 等. 双锥/双楔流动中的高温气体效应仿真模拟[J]. 气体物理, 2022, 7(4): 10-18. |
| YUAN J Y, REN X, CAI G B, et al. Simulation of high temperature gas effects in high enthalpy double cone/wedge flows[J]. Physics of Gases, 2022, 7(4): 10-18 (in Chinese). | |
| 13 | 李祝飞. 高超声速进气道起动特性机理研究[D]. 合肥: 中国科学技术大学, 2013. |
| LI Z F. An investigating on starting characteristics of hypersonic inlets[D]. Hefei: University of Science and Technology of China, 2013 (in Chinese). | |
| 14 | CHANG J T, LI N, XU K J, et al. Recent research progress on unstart mechanism, detection and control of hypersonic inlet[J]. Progress in Aerospace Sciences, 2017, 89: 1-22. |
| 15 | 李楠. 超燃冲压发动机内激波串运动不稳定及控制方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. |
| LI N. Investigation of the shock train instability and control method in Scramjet[D]. Harbin: Harbin Institute of Technology, 2019 (in Chinese). | |
| 16 | BABINSKY H, HARVEY J. Shock wave-boundary-layer interactions[M]. Cambridge: Cambridge University Press, 2011. |
| 17 | GAITONDE D V. Progress in shock wave/boundary layer interactions[J]. Progress in Aerospace Sciences, 2015, 72: 80-99. |
| 18 | HADJADJ A, PERROT Y, VERMA S. Numerical study of shock/boundary layer interaction in supersonic overexpanded nozzles[J]. Aerospace Science and Technology, 2015, 42: 158-168. |
| 19 | BAO Y, QIU R F, ZHOU K, et al. Study of shock wave/boundary layer interaction from the perspective of nonequilibrium effects[J]. Physics of Fluids, 2022, 34(4): 046109. |
| 20 | NEUENHAHN T, OLIVIER H. Influence of the wall temperature and the entropy layer effects on double wedge shock boundary layer interactions[C]∥ 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2006: 8136. |
| 21 | BOROVOY V Y, EGOROV I V, SKURATOV A S, et al. Two-dimensional shock-wave/boundary-layer interaction in the presence of entropy layer[J]. AIAA Journal, 2013, 51(1): 80-93. |
| 22 | DÉLERY J, DUSSAUGE J P. Some physical aspects of shock wave/boundary layer interactions[J]. Shock Waves, 2009, 19(6): 453-468. |
| 23 | MAHESH K, LELE S K, MOIN P. The influence of entropy fluctuations on the interaction of turbulence with a shock wave[J]. Journal of Fluid Mechanics, 1997, 334: 353-379. |
| 24 | 许爱国, 张玉东. 复杂介质动理学[M]. 北京: 科学出版社, 2022. |
| XU A G, ZHANG Y D. Complex media kinetics[M]. Beijing: Science Press, 2022 (in Chinese). | |
| 25 | GAN Y B, XU A G, ZHANG G C, et al. Discrete Boltzmann trans-scale modeling of high-speed compressible flows[J]. Physical Review: E, 2018, 97(5): 053312. |
| 26 | QIU R F, ZHOU T, BAO Y, et al. Mesoscopic kinetic approach for studying nonequilibrium hydrodynamic and thermodynamic effects of shock wave, contact discontinuity, and rarefaction wave in the unsteady shock tube[J]. Physical Review: E, 2021, 103(5): 053113. |
| 27 | LIN C D, SU X L, ZHANG Y D. Hydrodynamic and thermodynamic nonequilibrium effects around shock waves: Based on a discrete Boltzmann method[J]. Entropy, 2020, 22(12): 1397. |
| 28 | ZHANG Y D, XU A G, ZHANG G C, et al. Kinetic modeling of detonation and effects of negative temperature coefficient[J]. Combustion and Flame, 2016, 173: 483-492. |
| 29 | ZHANG Y D, XU A G, ZHANG G C, et al. Entropy production in thermal phase separation: a kinetic-theory approach[J]. Soft Matter, 2019, 15(10): 2245-2259. |
| 30 | 陈式刚. 非平衡统计力学[M]. 北京: 科学出版社, 2010. |
| CHEN S G. Non-equilibrium statistical mechanics[M]. Beijing: Science Press, 2010 (in Chinese). | |
| 31 | 沈青. 稀薄气体动力学[M]. 北京: 国防工业出版社, 2003. |
| SHEN Q. Rarefied gas dynamics[M]. Beijing: National Defense Industry Press, 2003 (in Chinese). | |
| 32 | LI Z H, PENG A P, ZHANG H X, et al. Rarefied gas flow simulations using high-order gas-kinetic unified algorithms for Boltzmann model equations[J]. Progress in Aerospace Sciences, 2015, 74: 81-113. |
| 33 | 刘畅, 徐昆. 离散时空直接建模思想及其在模拟多尺度输运中的应用[J]. 空气动力学学报, 2020, 38(2):197-216. |
| LIU C, XU K. Direct modeling methodology and its applications in multiscale transport process[J]. Acta Aerodynamica Sinica, 2020, 38(2):197-216 (in Chinese). | |
| 34 | 陈伟芳, 赵文文. 稀薄气体动力学矩方法及数值模拟[M]. 北京: 科学出版社, 2017. |
| CHEN W F, ZHAO W W. Moment equations and numerical methods for rarefied gas flows [M]. Beijing: Science Press, 2017 (in Chinese). | |
| 35 | 何雅玲, 王勇, 李庆. 格子Boltzmann方法的理论及应用[M]. 北京: 科学出版社, 2009. |
| HE Y L, WANG Y, LI Q. Lattice Boltzmann method: Theory and applications[M]. Beijing: Science Press, 2009 (in Chinese). | |
| 36 | XU A G, ZHANG G C, ZHANG Y D. Discrete Boltzmann modeling of compressible flows[M]∥ Kinetic theory. Rijeka: InTech, 2018. |
| 37 | 许爱国, 单奕铭, 陈锋, 等. 燃烧多相流的介尺度动理学建模研究进展[J]. 航空学报, 2021, 42(12): 52-68 |
| XU A G, SHAN Y M, CHEN F, et al. Progress of mesoscale modeling and investigation of combustion multiphase flow[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(12): 52-68 (in Chinese). | |
| 38 | 许爱国, 陈杰, 宋家辉, 等. 多相流系统的离散玻尔兹曼研究进展[J]. 空气动力学学报, 2021, 39(3):138-169. |
| XU A G, CHEN J, SONG J H, et al. Progress of discrete Boltzmann study on multiphase complex flows[J]. Acta Aerodynamica Sinica, 2021, 39(3): 138-169 (in Chinese). | |
| 39 | 许爱国, 宋家辉, 陈锋, 等. 基于相空间的复杂物理场建模与分析方法[J]. 计算物理, 2021, 38(6): 631-660. |
| XU A G, SONG J H, CHEN F, et al. Modeling and analysis methods for complex fields based on phase space[J]. Chinese Journal of Computational Physics, 2021, 38(6): 631-660 (in Chinese). | |
| 40 | GAN Y B, XU A G, LAI H L, et al. Discrete Boltzmann multi-scale modelling of non-equilibrium multiphase flows[J]. Journal of Fluid Mechanics, 2022, 951: A8. |
| 41 | ZHANG D J, XU A G, ZHANG Y D, et al. Discrete Boltzmann modeling of high-speed compressible flows with various depths of non-equilibrium[J]. Physics of Fluids, 2022, 34(8): 086104. |
| 42 | ZHANG Y D, XU A G, ZHANG G C, et al. Discrete Boltzmann method for non-equilibrium flows: Based on Shakhov model[J]. Computer Physics Communications, 2019, 238: 50-65. |
| 43 | ZHANG Y D, XU A G, CHEN F, et al. Non-equilibrium characteristics of mass and heat transfers in the slip flow[J]. AIP Advances, 2022, 12(3): 035347. |
| 44 | XU A G, ZHANG G C, GAN Y B, et al. Lattice Boltzmann modeling and simulation of compressible flows[J]. Frontiers of Physics, 2012, 7(5): 582-600. |
| 45 | ZHANG Y D, XU A G, ZHANG G C, et al. Discrete Boltzmann method with Maxwell-type boundary condition for slip flow[J]. Communications in Theoretical Physics, 2018, 69(1): 77. |
| 46 | BHATNAGAR P L, GROSS E P, KROOK M. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems[J]. Physical Review, 1954, 94(3): 511-525. |
| 47 | WIETING A R, HOLDEN M S. Experimental shock-wave interference heating on a cylinder at Mach 6 and 8[J]. AIAA Journal, 1989, 27(11): 1557-1565. |
| [1] | Feiteng LUO, Zhenming QU, Haitao LI, Xinke LI, Dahao YAO, Wenjuan CHEN, Yaosong LONG, Baoxi WEI, Yanjin MAN, Fujiang YANG, Qiang CHENG, Wubin KONG. Research progress and key issues of inlet pre-injection at hypersonic condition [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(8): 631189-631189. |
| [2] | Hongyu WANG, Gang WANG, Tao LI, Zhenhou CHAO, Feng GAO. Transverse jet mixing based on energy deposition control via pulsed discharge [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(14): 131520-131520. |
| [3] | LIN Aqiang, LIU Gaowen, WU Heng, CHANG Ran, FENG Qing. Mechanism and theoretical analysis of pressure ratio and entropy increase in a pre-swirl system of gas turbine engine [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 125907-125907. |
| [4] | GE Jianhui, XU Jinglei, WANG Mingtao, MO Jianwei. Prediction of Flow Separation in Asymmetric Ramp Nozzle [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2012, 33(8): 1394-1399. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341

