Acta Aeronautica et Astronautica Sinica ›› 2023, Vol. 44 ›› Issue (15): 528787-528787.doi: 10.7527/S1000-6893.2023.28787
• Reviews • Previous Articles Next Articles
Mingbo SUN(), Jiajian ZHU, Tiangang LUO, Qinyuan LI, Yifu TIAN, Minggang WAN, Yongchao SUN
Received:
2023-04-03
Revised:
2023-04-21
Accepted:
2023-05-11
Online:
2023-08-15
Published:
2023-05-15
Contact:
Mingbo SUN
E-mail:sunmingbo@nudt.edu.cn
Supported by:
CLC Number:
Mingbo SUN, Jiajian ZHU, Tiangang LUO, Qinyuan LI, Yifu TIAN, Minggang WAN, Yongchao SUN. Research progress of unsteady supersonic combustion controlled by electric excitation technology[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(15): 528787-528787.
Table 1
Summary of research results on electric excitation enhanced scramjet combustor ignition
团队 | 机构 | 电激励类型 | 典型工况 | 作用效果 | 优点 | 局限 | 功率 |
---|---|---|---|---|---|---|---|
Takita[ | 日本东北大学 | 等离子体炬 | Ma=2.3 Ts=273.15 K | 成功点火 | 核心温度高,8 000 K以上 | 电极烧蚀严重,电源体积较大 | 2.5 kW |
Leonov[ | 俄罗斯科学院 | 准直流放电 | Ma=1.8~2.0 Ts=300 K | 流动控制,强化点火 | 电流密度高,作用范围广,稳定性强 | 电极易烧蚀,配套设施复杂 | 1~10 kW |
Ombrello[ | 美国空军实验室 | 火花放电 | Ma=2.0 Ts=590 K | 多点火器强化点火 | 简单易操作 | 作用面积有限 | |
Do[ | 美国斯坦福大学 | 纳秒脉冲放电 | Ma=1.7~3.0 Ts=900~1 500 K | 促进燃烧,加速点火 | 高能量密度,短时间作用,可控性强 | 对电源要求高 | |
孙明波[ | 国防科技大学 | 滑动弧放电 | Ma=2.00~2.92 Ts=800~1 600 K | 火焰传播时间减少48%,缩短点火时间61% | 功率高、作用范围大 | 能耗高,对电源设备要求高 | 1.2~5.0 kW |
Table 2
Summary of research results on electric excitation control of scramjet combustion state
团队 | 机构 | 电激励类型 | 典型工况 | 作用效果 | 优点 | 局限 | 功率 |
---|---|---|---|---|---|---|---|
Leonov[ | 美国圣母大学 | 准直流放电 | Ma=2 Ts=295~750 K | 调控模态 | 和凹腔一体化设计 | 高温限制工作时长 | 11.3~11.9 kW |
Savelkin[ | 俄亥俄州立大学 | 准直流放电 | Ma=2 | 电压波形和燃烧振荡耦合 | 燃料提前加热和氧化 | 喷注和放电相互影响 | 3~24 kW |
顾洪斌[ | 中国科学院 力学研究所 | 微波增强滑动弧 | Ma=2.5 Ts=1 249 K | 调控模态 | 微波增强滑动弧电激励 | 系统复杂 | |
孙明波[ | 国防科技大学 | 滑动弧放电 | Ma=2.92 Ts=1 590 K | 调控模态、 抑制振荡、 消除闪回 | 激励时间长、 作用面积大 | 需要调制、交流电波形 | 1.2~5.0 kW |
Table 3
Summary of research results on combustion and flame stabilization of scramjet combustor enhanced by electric excitation
团队 | 机构 | 电激励类型 | 典型工况 | 作用效果 | 优点 | 局限 | 功率 |
---|---|---|---|---|---|---|---|
Leonov[ | 美国圣母大学 | 准直流放电 | Ma=2.0 Ts=300~750 K | 宽范围火焰稳定、改变稳焰模式 | 连续电激励、促进掺混、热效应强 | 高功耗、电极易烧蚀 | 12~18 kW |
Takita[ | 日本东北大学 | 等离子体炬 | Ma=2.3 Ts: 室温 | 稳焰与助燃,功率越大,燃烧越强 | 高温、活性组分多 | 需要供气、 低效能、等离子体在装置内部 | 1.2~4.2 kW |
Takita[ | 日本东北大学 | 介质阻挡放电 | Ma=2.0 Ts=190 K | 助燃,壁面压力提升10%~20% | 低功耗、活性组分多、助燃效果显著 | 放电难度大、低能量密度沉积、需要组合使用 | 10 W |
Do[ | 美国斯坦福大学 | 纳秒脉冲放电 | Ma=1.7~3.0 Ts=900~1 500 K | 特殊来流条件下的稳焰 | 化学效应强、高频、短脉宽 | 更适合低压和稀燃环境、电磁干扰强 | |
孙明波[ | 国防科技大学 | 滑动弧放电 | Ma=2.00~2.92 Ts=800~1 600 K | 拓宽火焰吹熄极限20%; 助燃,壁面压力提高10% | 高频电激励、作用面积大、兼顾热效应和化学效应 | 交流电存在过零点 | 1.2~5.0 kW |
1 | 曾慧, 白菡尘, 朱涛. X-51A超燃冲压发动机及飞行验证计划[J]. 导弹与航天运载技术, 2010(1): 57-61. |
ZENG H, BAI H C, ZHU T. X-51A scramjet engine flight and demonstration program[J]. Missiles and Space Vehicles, 2010(1): 57-61 (in Chinese). | |
2 | NAKAYA S, HIKICHI Y, NAKAZAWA Y, et al. Ignition and supersonic combustion behavior of liquid ethanol in a scramjet model combustor with cavity flame holder[J]. Proceedings of the Combustion Institute, 2015, 35(2): 2091-2099. |
3 | LIU Q L, BACCARELLA D, LEE T H. Review of combustion stabilization for hypersonic airbreathing propulsion[J]. Progress in Aerospace Sciences, 2020, 119: 100636. |
4 | 赵永胜, 林宇震, 王建臣, 等. 支板/凹腔超声速燃烧室总压损失特性研究[J]. 推进技术, 2016, 37(2): 339-345. |
ZHAO Y S, LIN Y Z, WANG J C, et al. Total pressure loss characteristics in a strut-cavity based scramjet combustor[J]. Journal of Propulsion Technology, 2016, 37(2): 339-345 (in Chinese). | |
5 | ROSATO D A, OMBRELLO T M, CUPPOLETTI D, et al. Ignition mechanisms of pulse detonator initiated scramjet cavity[J]. Proceedings of the Combustion Institute, 2021, 38(3): 3853-3860. |
6 | MENG Y, GU H B, ZHUANG J H, et al. Experimental study of mode transition characteristics of a cavity-based scramjet combustor during acceleration[J]. Aerospace Science and Technology, 2019, 93: 105316. |
7 | 李应红, 吴云. 等离子体激励调控流动与燃烧的研究进展与展望[J]. 中国科学: 技术科学, 2020, 50(10): 1252-1273. |
LI Y H, WU Y. Research progress and outlook of flow control and combustion control using plasma actuation[J]. Scientia Sinica (Technologica), 2020, 50(10): 1252-1273 (in Chinese). | |
8 | JU Y G, SUN W T. Plasma assisted combustion: Progress, challenges, and opportunities[J]. Combustion and Flame, 2015, 162(3): 529-532. |
9 | LIN B X, WU Y, ZHANG Z B, et al. Multi-channel nanosecond discharge plasma ignition of premixed propane/air under normal and sub-atmospheric pressures[J]. Combustion and Flame, 2017, 182: 102-113. |
10 | ZHONG H T, MAO X Q, ROUSSO A C, et al. Kinetic study of plasma-assisted n-dodecane/O2/N2 pyrolysis and oxidation in a nanosecond-pulsed discharge[J]. Proceedings of the Combustion Institute, 2021, 38(4): 6521-6531. |
11 | TANG Y, SUN J G, SHI B L, et al. Extension of flammability and stability limits of swirling premixed flames by AC powered gliding arc discharges[J]. Combustion and Flame, 2021, 231: 111483. |
12 | SUN J G, TANG Y, LI S Q. Plasma-assisted stabilization of premixed swirl flames by gliding arc discharges[J]. Proceedings of the Combustion Institute, 2021, 38(4): 6733-6741. |
13 | 张军龙, 常军涛, 王瑄, 等. 基于支板稳燃的超声速火焰特性研究进展[J]. 空气动力学学报, 2020, 38(3): 577-592. |
ZHANG J L, CHANG J T, WANG X, et al. Recent research progress on flame characteristics in strut-equipped scramjet combustor[J]. Acta Aerodynamica Sinica, 2020, 38(3): 577-592 (in Chinese). | |
14 | YANG K, WANG N, PAN Y, et al. Effect of cavity arrangement on the ignition mode of vaporized kerosene in supersonic flow[J]. Aerospace Science and Technology, 2021, 113: 106691. |
15 | TIAN Y, ZENG X J, YANG S H, et al. Study on the effects of thermal throat on flame stabilization in a kerosene fueled supersonic combustor[J]. Energy Conversion and Management, 2018, 166: 98-105. |
16 | REN Z X, WANG B, XIANG G M, et al. Supersonic spray combustion subject to scramjets: Progress and challenges[J]. Progress in Aerospace Sciences, 2019, 105: 40-59. |
17 | SONG X L, WANG H B, SUN M B, et al. Experimental study of near-blowoff characteristics in a cavity-based supersonic combustor[J]. Acta Astronautica, 2018, 151: 37-43. |
18 | OMBRELLO T, JU Y G, FRIDMAN A. Kinetic ignition enhancement of diffusion flames by nonequilibrium magnetic gliding arc plasma[J]. AIAA Journal, 2008, 46(10): 2424-2433. |
19 | FRIDMAN A, GUTSOL A, GANGOLI S, et al. Characteristics of gliding arc and its application in combustion enhancement[J]. Journal of Propulsion and Power, 2008, 24(6): 1216-1228. |
20 | GAO J L, KONG C D, ZHU J J, et al. Visualization of instantaneous structure and dynamics of large-scale turbulent flames stabilized by a gliding arc discharge[J]. Proceedings of the Combustion Institute, 2019, 37(4): 5629-5636. |
21 | TAKITA K, UEMOTO T, SATO T, et al. Ignition characteristics of plasma torch for hydrogen jet in an airstream[J]. Journal of Propulsion and Power, 2000, 16(2): 227-233. |
22 | BARBI E, MAHAN J R, O'BRIEN W F, et al. Operating characteristics of a hydrogen-argon plasma torch for supersonic combustion applications[J]. Journal of Propulsion and Power, 1989, 5(2): 129-133. |
23 | LEONOV S B, HOUPT A, HEDLUND B. Experimental demonstration of plasma-based flameholder in a model scramjet[C]∥Proceedings of the 21st AIAA International Space Planes and Hypersonics Technologies Conference. Reston: AIAA, 2017. |
24 | CAI Z, ZHU J J, SUN M B, et al. Spark-enhanced ignition and flame stabilization in an ethylene-fueled scramjet combustor with a rear-wall-expansion geometry[J]. Experimental Thermal and Fluid Science, 2018, 92: 306-313. |
25 | KIMURA I, AOKI H, KATO M. The use of a plasma jet for flame stabilization and promotion of combustion in supersonic air flows[J]. Combustion and Flame, 1981, 42: 297-305. |
26 | TAKITA K, MURAKAMI K, NAKANE H, et al. A novel design of a plasma jet torch igniter in a scramjet combustor[J]. Proceedings of the Combustion Institute, 2005, 30(2): 2843-2849. |
27 | LI F, YU X L, TONG Y G, et al. Plasma-assisted ignition for a kerosene fueled scramjet at Mach 1.8[J]. Aerospace Science and Technology, 2013, 28(1): 72-78. |
28 | LEONOV S, YARANTSEV D, NAPARTOVICH A, et al. Plasma-assisted ignition and flameholding in high-speed flow[C]∥Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006. |
29 | LEONOV S B, YARANTSEV D A. Near-surface electrical discharge in supersonic airflow: Properties and flow control[J]. Journal of Propulsion and Power, 2008, 24(6): 1168-1181. |
30 | LEONOV S B, YARANTSEV D A. Plasma-induced ignition and plasma-assisted combustion in high-speed flow[J]. Plasma Sources Science and Technology, 2007, 16(1): 132-138. |
31 | FIRSOV A, SAVELKIN K V, YARANTSEV D A, et al. Plasma-enhanced mixing and flameholding in supersonic flow[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373(2048): 20140337. |
32 | LEONOV S, ISAENKOV Y, SHNEIDER M, et al. High-power filamentary pulse discharge in supersonic flow[C]∥Proceedings of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2010. |
33 | HAMMACK S D, OMBRELLO T M. Spatio-temporal evolution of cavity ignition in supersonic flow[J]. Proceedings of the Combustion Institute, 2021, 38(3): 3845-3852. |
34 | OMBRELLO T M, CARTER C D, TAM C J, et al. Cavity ignition in supersonic flow by spark discharge and pulse detonation[J]. Proceedings of the Combustion Institute, 2015, 35(2): 2101-2108. |
35 | AN B, YANG L C, WANG Z G, et al. Characteristics of laser ignition and spark discharge ignition in a cavity-based supersonic combustor[J]. Combustion and Flame, 2020, 212: 177-188. |
36 | HUANG S F, WU Y, SONG H M, et al. Experimental investigation of multichannel plasma igniter in a supersonic model combustor[J]. Experimental Thermal and Fluid Science, 2018, 99: 315-323. |
37 | JU Y G, SUN W T. Plasma assisted combustion: Dynamics and chemistry[J]. Progress in Energy and Combustion Science, 2015, 48: 21-83. |
38 | SONI J, ROY S. Low pressure characterization of dielectric barrier discharge actuators[J]. Applied Physics Letters, 2013, 102(11): 112908. |
39 | GOLDBERG B M, CHNG T L, DOGARIU A, et al. Electric field measurements in a near atmospheric pressure nanosecond pulse discharge with picosecond electric field induced second harmonic generation[J]. Applied Physics Letters, 2018, 112(6): 064102. |
40 | DALAINE V, CORMIER J M, LEFAUCHEUX P. A gliding discharge applied to H2S destruction[J]. Journal of Applied Physics, 1998, 83(5): 2435-2441. |
41 | BO Z, WU E K, YAN J H, et al. Note: Gliding arc discharges with phase-chopped voltage supply for enhancement of energy efficiency in volatile organic compound decomposition[J]. Review of Scientific Instruments, 2013, 84(1): 016105. |
42 | DO H, CAPPELLI M A, MUNGAL M G. Plasma assisted cavity flame ignition in supersonic flows[J]. Combustion and Flame, 2010, 157(9): 1783-1794. |
43 | SHAHRBABAKI A N, BAZAZZADEH M, KHOSHK⁃ HOO R. Investigation on supersonic flow control using nanosecond dielectric barrier discharge plasma actuators[J]. International Journal of Aerospace Engineering, 2021, 2021: 1-14. |
44 | ZHU J J, GAO J L, EHN A, et al. Spatiotemporally resolved characteristics of a gliding arc discharge in a turbulent air flow at atmospheric pressure[J]. Physics of Plasmas, 2017, 24(1): 013514. |
45 | JIA M, ZHANG Z B, CUI W, et al. Experimental investigation of a gliding discharge plasma jet igniter[J]. Chinese Journal of Aeronautics, 2022, 35(6): 116-124. |
46 | WANG W Z, JIA M, FENG R, et al. Experimental investigation on the gliding arc plasma supported combustion in the scramjet combustor[J]. Acta Astronautica, 2020, 177: 133-141. |
47 | FENG R, HUANG Y H, ZHU J J, et al. Ignition and combustion enhancement in a cavity-based supersonic combustor by a multi-channel gliding arc plasma[J]. Experimental Thermal and Fluid Science, 2021, 120: 110248. |
48 | FENG R, ZHU J J, WANG Z G, et al. Ignition modes of a cavity-based scramjet combustor by a gliding arc plasma[J]. Energy, 2021, 214: 118875. |
49 | LUO T G, ZHU J J, SUN M B, et al. MCGA-assisted ignition process and flame propagation of a scramjet at Mach 2.0[J/OL]. Chinese Journal of Aeronautics, (2023-03-29)[2023-05-11]. . |
50 | FENG R, ZHU J J, WANG Z G, et al. Dynamic characteristics of a gliding arc plasma-assisted ignition in a cavity-based scramjet combustor[J]. Acta Astronautica, 2020, 171: 238-244. |
51 | FENG R, WANG Z G, SUN M B, et al. Multi-channel gliding arc plasma-assisted ignition in a kerosene-fueled model scramjet engine[J]. Aerospace Science and Technology, 2022, 126: 107606. |
52 | FENG R, SUN M B, WANG H B, et al. Experimental investigation of flameholding in a cavity-based scramjet combustor by a multi-channel gliding arc[J]. Aerospace Science and Technology, 2022, 121: 107381. |
53 | TIAN Y, YANG S H, LE J L, et al. Investigation of combustion and flame stabilization modes in a hydrogen fueled scramjet combustor[J]. International Journal of Hydrogen Energy, 2016, 41(42): 19218-19230. |
54 | XIAO B G, XING J W, TIAN Y, et al. Experimental and numerical investigations of combustion mode transition in a direct-connect scramjet combustor[J]. Aerospace Science and Technology, 2015, 46: 331-338. |
55 | ZHANG C L, CHANG J T, ZHANG Y S, et al. Flow field characteristics analysis and combustion modes classification for a strut/cavity dual-mode combustor[J]. Acta Astronautica, 2017, 137: 44-51. |
56 | CAI Z, SUN M B, WANG Z G, et al. Effect of cavity geometry on fuel transport and mixing processes in a scramjet combustor[J]. Aerospace Science and Technology, 2018, 80: 309-314. |
57 | AGUILERA C, YU K H. Scramjet to ramjet transition in a dual-mode combustor with fin-guided injection[J]. Proceedings of the Combustion Institute, 2017, 36(2): 2911-2918. |
58 | YU K, PANG B, HSU O. Implementing active combustion control in propulsion systems[C]∥Proceedings of the 37th Joint Propulsion Conference and Exhibit. Reston: AIAA, 2001. |
59 | 汪洪波. 超声速气流中凹腔稳定的射流燃烧模式及振荡机制研究[D]. 长沙: 国防科技大学, 2012: 14-17. |
WANG H B. Combustion modes and oscillation mechanisms of cavity-stabilized jet combustion in supersonic flows[D]. Changsha: National University of Defense Technology, 2012: 14-17 (in Chinese). | |
60 | MA F H, LI J A, YANG V, et al. Thermoacoustic flow instability in a scramjet combustor[C]∥Proceedings of the 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2005. |
61 | LIN K C, JACKSON K, BEHDADNIA R, et al. Acoustic characterization of an ethylene-fueled scramjet combustor with a cavity flameholder[J]. Journal of Propulsion and Power, 2010, 26(6): 1161-1170. |
62 | MICKA D J, DRISCOLL J F. Combustion characteristics of a dual-mode scramjet combustor with cavity flameholder[J]. Proceedings of the Combustion Institute, 2009, 32(2): 2397-2404. |
63 | WANG H B, WANG Z G, SUN M B, et al. Combustion characteristics in a supersonic combustor with hydrogen injection upstream of cavity flameholder[J]. Proceedings of the Combustion Institute, 2013, 34(2): 2073-2082. |
64 | ZHAO G Y, SUN M B, WU J S, et al. Investigation of flame flashback phenomenon in a supersonic crossflow with ethylene injection upstream of cavity flameholder[J]. Aerospace Science and Technology, 2019, 87: 190-206. |
65 | 赵国焱. 超声速气流中火焰闪回诱发与火焰传播机制研究[D]. 长沙: 国防科技大学, 2019: 3-6. |
ZHAO G Y. On the excitation of flame flashback and flame propagation mechanism in supersonic flow[D]. Changsha: National University of Defense Technology, 2019: 3-6 (in Chinese). | |
66 | FOTIA M L, DRISCOLL J F. Ram-scram transition and flame/shock-train interactions in a model scramjet experiment[J]. Journal of Propulsion and Power, 2013, 29(1): 261-273. |
67 | MATHUR T, GRUBER M, JACKSON K, et al. Supersonic combustion experiments with a cavity-based fuel injector[J]. Journal of Propulsion and Power, 2001, 17(6): 1305-1312. |
68 | 李大鹏, 丁猛, 梁剑寒, 等. Ma=4液体碳氢燃料超燃冲压发动机点火试验[J]. 推进技术, 2009, 30(4): 385-389, 395. |
LI D P, DING M, LIANG J H, et al. Ignition experimental for liquid hydrocarbon fueled scramiet with simulated flight Mach 4[J]. Journal of Propulsion Technology, 2009, 30(4): 385-389, 395 (in Chinese). | |
69 | FROST M A, GANGURDE D Y, PAULL A, et al. Boundary-layer separation due to combustion-induced pressure rise in a supersonic flow[J]. AIAA Journal, 2009, 47(4): 1050-1053. |
70 | 席文雄, 王振国, 李庆, 等. 超声速气流中煤油喷雾的热射流强迫点火[J]. 航空动力学报, 2012, 27(11): 2436-2441. |
XI W X, WANG Z G, LI Q, et al. Forced ignition of kerosene spray in supersonic airflow with hot gas injection[J]. Journal of Aerospace Power, 2012, 27(11): 2436-2441 (in Chinese). | |
71 | MITANI T, KOUCHI T. Flame structures and combustion efficiency computed for a Mach 6 scramjet engine[J]. Combustion and Flame, 2005, 142(3): 187-196. |
72 | WANG H B, WANG Z G, SUN M B, et al. Large-eddy/Reynolds-averaged Navier-Stokes simulation of combustion oscillations in a cavity-based supersonic combustor[J]. International Journal of Hydrogen Energy, 2013, 38(14): 5918-5927. |
73 | NORDIN-BATES K, FUREBY C, KARL S, et al. Understanding scramjet combustion using LES of the HyShot II combustor[J]. Proceedings of the Combustion Institute, 2017, 36(2): 2893-2900. |
74 | WANG Z G, SUN M B, WANG H B, et al. Mixing-related low frequency oscillation of combustion in an ethylene-fueled supersonic combustor[J]. Proceedings of the Combustion Institute, 2015, 35(2): 2137-2144. |
75 | SUN M B, CUI X D, WANG H B, et al. Flame flashback in a supersonic combustor fueled by ethylene with cavity flameholder[J]. Journal of Propulsion and Power, 2015, 31(3): 976-981. |
76 | 龚诚. 超声速气流中点火、火焰传播实验与数值模拟研究[D]. 长沙: 国防科技大学, 2011: 35-39. |
GONG C. Experimental and numerical research of the ignition and flame propagation process in the supersonic flows[D]. Changsha: National University of Defense Technology, 2011: 35-39 (in Chinese). | |
77 | 潘余. 超燃冲压发动机多凹腔燃烧室燃烧与流动过程研究[D]. 长沙: 国防科技大学, 2007: 101-103. |
PAN Y. Research on the combustion and flow process in the scramjet multi-cavity combustor[D]. Changsha: National University of Defense Technology, 2007: 101-103 (in Chinese). | |
78 | LEONOV S B, ELLIOTT S, CARTER C, et al. Modes of plasma-stabilized combustion in cavity-based M=2 configuration[J]. Experimental Thermal and Fluid Science, 2021, 124: 110355. |
79 | FENG R, ZHU J J, WANG Z G, et al. Suppression of combustion mode transitions in a hydrogen-fueled scramjet combustor by a multi-channel gliding arc plasma[J]. Combustion and Flame, 2022, 237: 111843. |
80 | 冯戎. 超声速气流中滑动弧等离子体强化点火和助燃技术研究[D]. 长沙: 国防科技大学, 2022: 116-119. |
FENG R. Investigation of gliding arc plasma-assisted ignition and combustion in a supersonic flow[D]. Changsha: National University of Defense Technology, 2022: 116-119 (in Chinese). | |
81 | ELSABBAGH M, KADO S, IKEDA Y, et al. Measurements of rotational temperature and density of molecular nitrogen in spark-plug assisted atmospheric-pressure microwave discharges by rotational Raman scattering[J]. Japanese Journal of Applied Physics, 2011, 50(7R): 076101. |
82 | MENG Y, GU H B, CHEN F. Influence of plasma on the combustion mode in a scramjet[J]. Aerospace, 2022, 9(2): 73. |
83 | 欧阳浩. 超燃冲压发动机燃烧室中的非稳态燃烧过程研究[D]. 长沙: 国防科技大学, 2018: 118-120. |
OUYANG H. Research on the unsteady combustion process in scramjet combustor[D]. Changsha: National University of Defense Technology, 2018: 118-120 (in Chinese). | |
84 | 李凡, 汪洪波, 孙明波, 等. 两种优化组合式燃料喷注方案的凹腔稳焰特性实验研究[J]. 固体火箭技术, 2021, 44(2): 152-159. |
LI F, WANG H B, SUN M B, et al. Experiments on flame stabilization of two combined fuel injection schemes in a cavity-based combustor[J]. Journal of Solid Rocket Technology, 2021, 44(2): 152-159 (in Chinese). | |
85 | SAVELKIN K V, YARANTSEV D A, ADAMOVICH I V, et al. Ignition and flameholding in a supersonic combustor by an electrical discharge combined with a fuel injector[J]. Combustion and Flame, 2015, 162(3): 825-835. |
86 | VINOGRADOV V A, SHIKHMAN Y M, SEGAL C. A review of fuel pre-injection in supersonic, chemically reacting flows[J]. Applied Mechanics Reviews, 2007, 60(4): 139-148. |
87 | RASMUSSEN C, DRISCOLL J. Blowout limits of flames in high-speed airflows: Critical damkohler number[C]∥Proceedings of the 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2008. |
88 | DRISCOLL J F, RASMUSSEN C C. Correlation and analysis of blowout limits of flames in high-speed airflows[J]. Journal of Propulsion and Power, 2005, 21(6): 1035-1044. |
89 | RASMUSSEN C C, DRISCOLL J F, CARTER C D, et al. Characteristics of cavity-stabilized flames in a supersonic flow[J]. Journal of Propulsion and Power, 2005, 21(4): 765-768. |
90 | RASMUSSEN C C, DRISCOLL J F, HSU K Y, et al. Stability limits of cavity-stabilized flames in supersonic flow[J]. Proceedings of the Combustion Institute, 2005, 30(2): 2825-2833. |
91 | ZHANG T C, WANG J, QI L, et al. Blowout limits of cavity-stabilized flame of supercritical kerosene in supersonic combustors[J]. Journal of Propulsion and Power, 2014, 30(5): 1161-1166. |
92 | LEONOV S. Electrically driven supersonic combustion[J]. Energies, 2018, 11(7): 1733. |
93 | LEONOV S, YARANTSEV D, CARTER C. Experiments on electrically controlled flameholding on a plane wall in supersonic airflow[J]. Journal of Propulsion and Power, 2009, 25(2): 289-294. |
94 | LEONOV S, HOUPT A, ELLIOTT S, et al. Ethylene ignition and flameholding by electrical discharge in supersonic combustor[J]. Journal of Propulsion and Power, 2018, 34(2): 499-509. |
95 | TAKITA K, SHISHIDO K, KURUMADA K. Ignition in a supersonic flow by a plasma jet of mixed feedstock including CH4 [J]. Proceedings of the Combustion Institute, 2011, 33(2): 2383-2389. |
96 | TAKITA K, NAKANE H, MASUYA G. Optimization of double plasma jet torches in a scramjet combustor[J]. Proceedings of the Combustion Institute, 2007, 31(2): 2513-2520. |
97 | MATSUBARA Y, TAKITA K, MASUYA G. Combustion enhancement in a supersonic flow by simultaneous operation of DBD and plasma jet[J]. Proceedings of the Combustion Institute, 2013, 34(2): 3287-3294. |
98 | DUNN I, AHMED K A, LEIWEKE R J, et al. Optimization of flame kernel ignition and evolution induced by modulated nanosecond-pulsed high-frequency discharge[J]. Proceedings of the Combustion Institute, 2021, 38(4): 6541-6550. |
99 | DO H, IM S K, CAPPELLI M A, et al. Plasma assisted flame ignition of supersonic flows over a flat wall[J]. Combustion and Flame, 2010, 157(12): 2298-2305. |
100 | TIAN Y F, ZHU J J, SUN M B, et al. Enhancement of blowout limit in a Mach 2.92 cavity-based scramjet combustor by a gliding arc discharge[J]. Proceedings of the Combustion Institute, 2023, 39(4): 5697-5705. |
101 | ZHU Z F, LI B, GAO Q, et al. Long-gap ignition using femtosecond laser filament-triggered discharge[J]. Optics & Laser Technology, 2022, 156: 108611. |
102 | 孟宇, 顾洪斌, 孙文明, 等. 微波增强滑移电弧等离子体辅助超声速燃烧[J]. 航空学报, 2020, 41(2): 123345. |
MENG Y, GU H B, SUN W M, et al. Microwave enhanced gliding arc plasma assisted supersonic combustion[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2): 123345 (in Chinese). |
[1] | Hongwei QIAO, Jianhan LIANG, Lin ZHANG, Mingbo SUN, Yuqiao CHEN. Research progress of probability density function approach in supersonic combustion [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 28802-028802. |
[2] | Xiaoyong LIU, Mingfu WANG, Jianwen LIU, Xin REN, Xuan ZHANG. Review and prospect of research on scramjet [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529878-529878. |
[3] | Jianheng JI, Zun CAI, Taiyu WANG, Mingbo SUN, Zhenguo WANG. Flow and combustion process for wide speed range scramjet: Review [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(3): 28696-028696. |
[4] | Qingdi GUAN, Jianhan LIANG, Lin ZHANG, Wenwu CHEN, Yuqiao CHEN. Probability density function method in general curvilinear coordinate system and its application in supersonic combustion [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(4): 126677-126677. |
[5] | MENG Yu, GU Hongbin, SUN Wenming, ZHANG Xinyu. Microwave enhanced gliding arc plasma assisted supersonic combustion [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(2): 123345-123345. |
[6] | MENG Yu, GU Hongbin, ZHANG Xinyu. Influence of microwave on structure of supersonic combustion flame [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(12): 123224-123224. |
[7] | YANG Zhanyu, SHAN Peng, ZHAO Lushun, JIE Ke, GUO Desan, LIU Jian, HUANG Yong. Experimental Study on Flame Holding Torch of a Hydrocarbon Fueled Combined Supersonic Combustor with a Pilot Burner and a Streamwise-vortices Generator [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2012, (3): 390-401. |
[8] | Chen Siyuan;Xu Xu. 3D Numerical Simulation of the Influence of Fuel Equivalence Ratio on Single Cavity Supersonic Combustor Flow [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2009, 30(5): 794-799. |
[9] | DING Meng;WANG Zhen-guo. Experimental Investigation on Drag of Cavity Flame Holder [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2006, 27(4): 556-560. |
[10] | ZHAO Shou-gen;CHENG Wei;GUAN De. Torsion Characteristics of Active Laminates with 1-3PFC Layers [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2006, 27(4): 624-629. |
[11] | DING Meng;LIANG Jian-han;LIU Wei-dong;WANG Zhen-guo. Experimental Study on the Interaction between Inlet and Combustor of Hydrocarbon Fueled Scramjet [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2005, 26(1): 27-31. |
[12] | WANG Xiao-dong;SONG Wen-yan. Effects of Fuel Injection Scheme on the Mixing and Combustion Efficiency of a Scramjet Combustor [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2004, 25(6): 556-559. |
[13] | CUI Yu-feng;XU Gang;HUANG Wei-guang. Numerical Simulation on Supersonic Combustion over a Reward Facing Step with Transverse Hydrogen and Air Injection [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2004, 25(2): 113-116. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341