ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2023, Vol. 44 ›› Issue (4): 126677-126677.doi: 10.7527/S1000-6893.2022.26677
• Fluid Mechanics and Flight Mechanics • Previous Articles Next Articles
Qingdi GUAN, Jianhan LIANG(), Lin ZHANG, Wenwu CHEN, Yuqiao CHEN
Received:
2021-11-19
Revised:
2021-12-10
Accepted:
2022-01-19
Online:
2023-02-25
Published:
2022-01-26
Contact:
Jianhan LIANG
E-mail:jhleon@vip.sina.com
Supported by:
CLC Number:
Qingdi GUAN, Jianhan LIANG, Lin ZHANG, Wenwu CHEN, Yuqiao CHEN. Probability density function method in general curvilinear coordinate system and its application in supersonic combustion[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(4): 126677-126677.
1 | 杨越, 游加平, 孙明波. 超声速燃烧数值模拟中的湍流与化学反应相互作用模型[J]. 航空学报, 2015, 36(1): 261-273. |
YANG Y, YOU J P, SUN M B. Modeling of turbulence-chemistry interactions in numerical simulations of supersonic combustion[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 261-273 (in Chinese). | |
2 | 许爱国, 单奕铭, 陈锋, 等. 燃烧多相流的介尺度动理学建模研究进展[J]. 航空学报, 2021, 42(12): 625842. |
XU A G, SHAN Y M, CHEN F, et al. Progress of mesoscale modeling and investigation of combustion multiphase flow[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(12): 625842 (in Chinese). | |
3 | PIERCE C D, MOIN P. Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion[J]. Journal of Fluid Mechanics, 2004, 504: 73-97. |
4 | BERGLUND M, FEDINA E, FUREBY C, et al. Finite rate chemistry large-eddy simulation of self-ignition in supersonic combustion ramjet[J]. AIAA Journal, 2010, 48(3): 540-550. |
5 | KERSTEIN A R. A linear-eddy model of turbulent scalar transport and mixing[J]. Combustion Science and Technology, 1988, 60(4-6): 391-421. |
6 | 陈崇沛, 梁剑寒, 关清帝, 等. 守恒型可压缩一维湍流方法及其在超声速标量混合层中的应用[J]. 航空学报, 2021, 42(S1): 726364. |
CHEN C P, LIANG J H, GUAN Q D, et al. Conservative compressible one-dimensional turbulence method and its application in supersonic scalar mixing layer[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(S1): 726364 (in Chinese). | |
7 | POPE S B. PDF methods for turbulent reactive flows[J]. Progress in Energy and Combustion Science, 1985, 11(2): 119-192. |
8 | PANT T, JAIN U, WANG H F. Transported PDF modeling of compressible turbulent reactive flows by using the Eulerian Monte Carlo fields method[J]. Journal of Computational Physics, 2021, 425: 109899. |
9 | GIVI P. Model-free simulations of turbulent reactive flows[J]. Progress in Energy and Combustion Science, 1989, 15(1): 1-107. |
10 | POPE S B. Computations of turbulent combustion: progress and challenges[J]. Symposium (International) on Combustion, 1991, 23(1): 591-612. |
11 | GAO F, O'BRIEN E E. A large-eddy simulation scheme for turbulent reacting flows[J]. Physics of Fluids A: Fluid Dynamics, 1993, 5(6): 1282-1284. |
12 | JAISHREE J. Lagrangian and Eulerian probability density function methods for turbulent reacting flows [D]. State College: Pennsylvania State University, 2011. |
13 | YANG Y, WANG H F, POPE S B, et al. Large-eddy simulation/probability density function modeling of a non-premixed CO/H2 temporally evolving jet flame[J]. Proceedings of the Combustion Institute, 2013, 34(1): 1241-1249. |
14 | JABERI F A, COLUCCI P J, JAMES S, et al. Filtered mass density function for large-eddy simulation of turbulent reacting flows [J]. Journal of Fluid Mechanics, 1999, 401: 85-121. |
15 | BANAEIZADEH A, LI Z R, JABERI F A. Compressible scalar filtered mass density function model for high-speed turbulent flows[J]. AIAA Journal, 2011, 49(10): 2130-2143. |
16 | KOMPERDA J, GHIASI Z, LI D R, et al. Simulation of the cold flow in a ramp-cavity combustor using a DSEM-LES/FMDF hybrid scheme[C]∥54th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2016. |
17 | ZHANG L, LIANG J H, SUN M B, et al. An energy-consistency-preserving large eddy simulation-scalar filtered mass density function (LES-SFMDF) method for high-speed flows[J]. Combustion Theory and Modelling, 2018, 22(1): 1-37. |
18 | ZHANG L, LIANG J H, SUN M B, et al. A conservative and consistent scalar filtered mass density function method for supersonic flows[J]. Physics of Fluids, 2021, 33(2): 026101. |
19 | VALIDI A, SCHOCK H, JABERI F. Turbulent jet ignition assisted combustion in a rapid compression machine[J]. Combustion and Flame, 2017, 186: 65-82. |
20 | RANADIVE H D. High-order compressible formulation for LES/PDF simulations of turbulent reacting flows[D]. Sydney: University of New South Wales, 2019. |
21 | CHENG T S, WEHRMEYER J A, PITZ R W, et al. Raman measurement of mixing and finite-rate chemistry in a supersonic hydrogen-air diffusion flame[J]. Combustion and Flame, 1994, 99(1): 157-173. |
22 | ABDULRAHMAN H, VALIDI A, JABERI F. Large-eddy simulation/filtered mass density function of non-premixed and premixed colorless distributed combustion[J]. Physics of Fluids, 2021, 33(5): 055118. |
23 | YOSHIZAWA A, HORIUTI K. A statistically-derived subgrid-scale kinetic energy model for the large-eddy simulation of turbulent flows[J]. Journal of the Physical Society of Japan, 1985, 54(8): 2834-2839. |
24 | LI P B, LI C Y, WANG H B, et al. Distribution characteristics and mixing mechanism of a liquid jet injected into a cavity-based supersonic combustor[J]. Aerospace Science and Technology, 2019, 94: 105401. |
25 | LIU C Y, SUN M B, WANG H B, et al. Ignition and flame stabilization characteristics in an ethylene-fueled scramjet combustor[J]. Aerospace Science and Technology, 2020, 106: 106186. |
26 | SHU C W. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws: NASA/CR-97-206253[R]. Washington, D.C.: NASA, 1997. |
27 | GIKHMAN I I, SKOROKHOD A V. The theory of stochastic processes III[M]. Berlin, Heidelberg: Springer, 2007. |
28 | WANG H F, POPOV P P, POPE S B. Weak second-order splitting schemes for Lagrangian Monte Carlo particle methods for the composition PDF/FDF transport equations[J]. Journal of Computational Physics, 2010, 229(5): 1852-1878. |
29 | EVANS J, SCHEXNAYDER C J, BEACH H. Application of a two-dimensional parabolic computer program to prediction of turbulent reacting flows: NASA-TP-1169[R]. Washington, D.C.: NASA, 1978. |
30 | LIU C Y, WANG N, YANG K, et al. Large eddy simulation of a supersonic lifted jet flame in the high-enthalpy coflows[J]. Acta Astronautica, 2021, 183: 233-243. |
31 | CONAIRE M Ó, CURRAN H J, SIMMIE J M, et al. A comprehensive modeling study of hydrogen oxidation[J]. International Journal of Chemical Kinetics, 2004, 36(11): 603-622. |
[1] | Hongwei QIAO, Jianhan LIANG, Lin ZHANG, Mingbo SUN, Yuqiao CHEN. Research progress of probability density function approach in supersonic combustion [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 28802-028802. |
[2] | Xiaoyong LIU, Mingfu WANG, Jianwen LIU, Xin REN, Xuan ZHANG. Review and prospect of research on scramjet [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529878-529878. |
[3] | Jianheng JI, Zun CAI, Taiyu WANG, Mingbo SUN, Zhenguo WANG. Flow and combustion process for wide speed range scramjet: Review [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(3): 28696-028696. |
[4] | Yuming ZHANG, Yuting DAI, Guangjing HUANG, Chao YANG, Shujie JIANG. Gust alleviation and aeroacoustic characteristics of flexible morphing trailing edge airfoil [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(10): 129219-129219. |
[5] | Fangcheng SHI, Zhenxun GAO, Yuyan TIAN, Chongwen JIANG, Tiantian WANG, Chun-Hian LEE. Large eddy simulation of ideally expanded supersonic jet noise [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(2): 626266-626266. |
[6] | Mingbo SUN, Jiajian ZHU, Tiangang LUO, Qinyuan LI, Yifu TIAN, Minggang WAN, Yongchao SUN. Research progress of unsteady supersonic combustion controlled by electric excitation technology [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(15): 528787-528787. |
[7] | Binbin ZHAO, Heng ZHANG, Jie LI. Review of numerical simulation on complex separated flow of iced airfoil [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(1): 627211-627211. |
[8] | ZHANG Junduo, ZUO Qinghai, LIN Mengda, HUANG Weixi, PAN Weijun, CUI Guixiang. Numerical simulation on near-field evolution of wake vortices of ARJ21 plane with crosswind [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(5): 125043-125043. |
[9] | XIE Chenyue, WANG Jianchun, WAN Minping, CHEN Shiyi. Artificial neural network model for large-eddy simulation of compressible turbulence [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(9): 625723-625723. |
[10] | LIU Yuanqiang, WANG Yanbing, XIANG Song, WANG Mengqi. Noise characteristics of propellers with different blade tips for electric aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(3): 624567-624567. |
[11] | WANG Fang, WANG Yudong, JIANG Shengli, CHEN Jun, TANG Jun, XU Huasheng, LI Xiangyuan, XING Jingwen, GAO Dongshuo, JIN Jie. Development and testing of AECSC-JASMIN turbulent combustion simulation software [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(12): 625003-625003. |
[12] | MENG Yu, GU Hongbin, SUN Wenming, ZHANG Xinyu. Microwave enhanced gliding arc plasma assisted supersonic combustion [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(2): 123345-123345. |
[13] | ZHU Zhibin, SHANG Qing, BAI Peng, LIU Qiang. Evolution of laminar separation phenomenon on low Reynolds number airfoil at different Reynolds numbers [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(5): 122528-122528. |
[14] | MENG Yu, GU Hongbin, ZHANG Xinyu. Influence of microwave on structure of supersonic combustion flame [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(12): 123224-123224. |
[15] | ZHANG Hongjun, ZHU Zhibin, SHANG Qing, LIU Zhiyong, SHEN Qing. Large eddy simulation of hypersonic inlet boundary layer transition triggered by zig-zag trip [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(10): 122930-122930. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341