Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (8): 28839-028839.doi: 10.7527/S1000-6893.2023.28839
• Reviews • Previous Articles Next Articles
Chunhui ZHAO1,2, Anmeng LIU1,2, Yang LYU1,2(), Quan PAN1,2
Received:
2023-04-07
Revised:
2023-05-17
Accepted:
2023-06-28
Online:
2024-04-25
Published:
2023-07-07
Contact:
Yang LYU
E-mail:lyu.yang@nwpu.edu.cn
Supported by:
CLC Number:
Chunhui ZHAO, Anmeng LIU, Yang LYU, Quan PAN. A survey of resilient self-localization for UAV[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 28839-028839.
Table 2
Characteristics of commonly used perception sensors of UAV positioning system
传感器 | 优点 | 缺点 |
---|---|---|
IMU | 短时数据准确 不受外界因素干扰 | 长时间漂移累积 |
GPS | 精确的全局定位 | 易受环境干扰 |
地磁传感器 | 全局定位 | 易受环境干扰,易被破坏 |
UWB | 快速准确的距离测量 | 易受遮挡干扰,多路径干扰 |
超声波 | 低成本、低载荷要求 一定的抗干扰能力 | 精度低,作用范围有限 |
气压计 | 准确的高度信息 | 受天气影响大 |
光电传感器 | 丰富的色彩信息 低载荷要求 | 受光照变化、能见度影响较大 在少纹理环境中效果不佳 |
红外传感器 | 全天候 一定的穿透能力 | 信噪比较低,纹理特征差 |
激光雷达 | 测距精度高 一定的光照鲁棒性 | 受气象、天气影响 |
Table 5
Reasons and solutions of some uncertainties occurred in estimation
问题 | 出现原因 | 解决思路 |
---|---|---|
离群点 | 特征错误匹配,导致 优化函数专注于处理 错误数据 | 1) 通过距离筛选,如 马氏距离叠加卡方 分布作为阈值 2) 更换带阈值的 误差函数(鲁棒核 函数),如Huber核函数 3) 优化特征匹配算法 |
线性化误差 | 对非线性的观测函数和 运动函数进行线性化时, 一阶泰勒展开近似 产生误差 | 1) 逆深度参数化 2) 延迟线性化 |
一致性问题 | 线性化过程中计算 导致可观性矩阵 与实际不符 | 1) First Estimate Jacobians 2) 随机克隆 |
边缘化问题 | 由于后端不能处理所有 路标点和状态,因此 需要将部分状态固定不再考虑,这会带来一些误差 | 1) 设计不同的取舍 策略,实现边缘化的 最小影响 2) 设计更加有效的 计算链路,以更大的 算力减小边缘化程度 |
1 | 赵春晖, 胡劲文, 吕洋, 等. 无人机空域感知与碰撞规避技术[M]. 西安: 西北工业大学出版社, 2019: 20-25. |
ZHAO C H, HU J W, LYU Y, et al. UAV sense and avoid technology[M]. Xi’an: Northwestern Polytechnical University Press, 2019: 20-25 (in Chinese). | |
2 | DARPA. Fast lightweight autonomy[EB/OL]. (2017-10-13) [2023-04-07]. . |
3 | DARPA. DARPA subterranean (SubT) challenge[EB/OL]. (2017-08-07) [2023-04-07]. |
4 | ALEXIS K. Towards a science of resilient robotic autonomy[DB/OL]. arXiv preprint: 2004.02403, 2020. |
5 | SANTAMARIA-NAVARRO A, THAKKER R, FAN D D, et al. Towards resilient autonomous navigation of drones[C]∥The International Symposium of Robotics Research. Cham: Springer Cham, 2022: 922-937. |
6 | DESOUZA G N, KAK A C. Vision for mobile robot navigation: A survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(2): 237-267. |
7 | 秦永元, 张洪钺, 汪叔华. 卡尔曼滤波与组合导航原理[M]. 3版. 西安: 西北工业大学出版社, 2015: 287-288. |
QIN Y Y, ZHANG H Y, WANG S H. Kalman filter and integrated navigation principle[M]. 3rd ed. Xi’an: Northwestern Polytechnical University Press, 2015: 287-288 (in Chinese). | |
8 | QI H H, MOORE J B. Direct Kalman filtering approach for GPS/INS integration[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(2): 687-693. |
9 | ZHAO C H, WANG R Z, ZHANG T W, et al. Visual odometry and scene matching integrated navigation system in UAV[C]∥17th International Conference on Information Fusion (FUSION). Piscataway: IEEE Press, 2014: 1-6. |
10 | SHAN T X, ENGLOT B, MEYERS D, et al. LIO-SAM: tightly-coupled lidar inertial odometry via smoothing and mapping[C]∥2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). New York: ACM, 2020: 5135–5142. |
11 | MUR-ARTAL R, TARDÓS J D. Visual-inertial monocular SLAM with map reuse[J]. IEEE Robotics and Automation Letters, 2017, 2(2): 796-803. |
12 | ROZENBERSZKI D, MAJDIK A L. LOL: Lidar-only odometry and localization in 3D point cloud maps[C]∥2020 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2020: 4379-4385. |
13 | REN K, DING L, WAN M J, et al. Target localization based on cross-view matching between UAV and satellite[J]. Chinese Journal of Aeronautics, 2022, 35(9): 333-341. |
14 | CARVALHO H, DEL MORAL P, MONIN A, et al. Optimal nonlinear filtering in GPS/INS integration[J]. IEEE Transactions on Aerospace and Electronic Systems, 1997, 33(3): 835-850. |
15 | LI J X, BI Y C, LI K, et al. Accurate 3D localization for MAV swarms by UWB and IMU fusion[C]∥2018 IEEE 14th International Conference on Control and Automation (ICCA). Piscataway: IEEE Press, 2018: 100-105. |
16 | MUELLER M W, HAMER M, D’ANDREA R. Fusing ultra-wideband range measurements with accelerometers and rate gyroscopes for quadrocopter state estimation[C]∥2015 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2015: 1730-1736. |
17 | DAVISON A J, REID I D, MOLTON N D, et al. MonoSLAM: Real-time single camera SLAM[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(6): 1052-1067. |
18 | FORSTER C, ZHANG Z C, GASSNER M, et al. SVO: Semidirect visual odometry for monocular and multicamera systems[J]. IEEE Transactions on Robotics, 2017, 33(2): 249-265. |
19 | QIN T, LI P L, SHEN S J. VINS-mono: A robust and versatile monocular visual-inertial state estimator[J]. IEEE Transactions on Robotics, 2018, 34(4): 1004-1020. |
20 | ECKENHOFF K, GENEVA P, HUANG G Q. MIMC-VINS: A versatile and resilient multi-IMU multi-camera visual-inertial navigation system[J]. IEEE Transactions on Robotics, 2021, 37(5): 1360-1380. |
21 | WANG C, ZHANG H D, NGUYEN T M, et al. Ultra-wideband aided fast localization and mapping system[C]∥2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE Press, 2017: 1602-1609. |
22 | EBADI K, PALIERI M, WOOD S, et al. DARE-SLAM: Degeneracy-aware and resilient loop closing in perceptually-degraded environments[J]. Journal of Intelligent & Robotic Systems, 2021, 102(1): 2. |
23 | BURRI M, NIKOLIC J, GOHL P, et al. The EuRoC micro aerial vehicle datasets[J]. International Journal of Robotics Research, 2016, 35(10): 1157-1163. |
24 | ENGEL J, KOLTUN V, CREMERS D. Direct sparse odometry[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(3): 611-625. |
25 | CAMPOS C, ELVIRA R, RODRÍGUEZ J J G, et al. ORB-SLAM3: An accurate open-source library for visual, visual-inertial, and multimap SLAM[J]. IEEE Transactions on Robotics, 2021, 37(6): 1874-1890. |
26 | LEUTENEGGER S, LYNEN S, BOSSE M, et al. Keyframe-based visual–inertial odometry using nonlinear optimization[J]. International Journal of Robotics Research, 2015, 34(3): 314-334. |
27 | ZHANG J, SINGH S. LOAM: Lidar odometry and mapping in real-time[C]∥Robotics: Science and Systems Conference. Robotics: Science and Systems Foundation, 2014: 1-9. |
28 | SHAN T X, ENGLOT B. LeGO-LOAM: Lightweight and ground-optimized lidar odometry and mapping on variable terrain[C]∥2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE Press, 2018: 4758-4765. |
29 | XU W, CAI Y X, HE D J, et al. FAST-LIO2: Fast direct LiDAR-inertial odometry[J]. IEEE Transactions on Robotics, 2022, 38(4): 2053-2073. |
30 | NGUYEN T M, YUAN S H, CAO M Q, et al. MILIOM: Tightly coupled multi-input lidar-inertia odometry and mapping[J]. IEEE Robotics and Automation Letters, 2021, 6(3): 5573-5580. |
31 | SONG Y, GUAN M Y, TAY W P, et al. UWB/LiDAR fusion for cooperative range-only SLAM[C]∥2019 International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2019: 6568-6574. |
32 | GRAETER J, WILCZYNSKI A, LAUER M. LIMO: lidar-monocular visual odometry[C]∥2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE Press, 2018: 7872-7879. |
33 | SHIN Y S, PARK Y S, KIM A. DVL-SLAM: Sparse depth enhanced direct visual-LiDAR SLAM[J]. Autonomous Robots, 2020, 44(2): 115-130. |
34 | SHAN T X, ENGLOT B, RATTI C, et al. LVI-SAM: Tightly-coupled lidar-visual-inertial odometry via smoothing and mapping[C]∥2021 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2021: 5692-5698. |
35 | LIN J R, ZHANG F. R3LIVE: A Robust, Real-time, RGB-colored, LiDAR-inertial-visual tightly-coupled state estimation and mapping package[C]∥2022 International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2022: 10672-10678. |
36 | NGUYEN T M, CAO M Q, YUAN S H, et al. VIRAL-fusion: A visual-inertial-ranging-lidar sensor fusion approach[J]. IEEE Transactions on Robotics, 2022, 38(2): 958-977. |
37 | 李家宁, 田永鸿. 神经形态视觉传感器的研究进展及应用综述[J]. 计算机学报, 2021, 44(6): 1258-1286. |
LI J N, TIAN Y H. Recent advances in neuromorphic vision sensors: A survey[J]. Chinese Journal of Computers, 2021, 44(6): 1258-1286 (in Chinese). | |
38 | ZHOU Y, GALLEGO G, SHEN S J. Event-based stereo visual odometry[J]. IEEE Transactions on Robotics, 2021, 37(5): 1433-1450. |
39 | SUN S H, CIOFFI G, DE VISSER C, et al. Autonomous quadrotor flight despite rotor failure with onboard vision sensors: Frames vs. events[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 580-587. |
40 | ZHU A Z, ATANASOV N, DANIILIDIS K. Event-based visual inertial odometry[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2017: 5816-5824. |
41 | LE GENTIL C, TSCHOPP F, ALZUGARAY I, et al. IDOL: A Framework for IMU-DVS Odometry using Lines[C]∥2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE Press, 2020: 5863-5870. |
42 | 李卓一. GNSS拒止的复杂环境中无人机自主导航技术研究[D]. 西安: 西北工业大学自动化学院, 2021: 17-38. |
LI Z Y. Research on autonomous navigation technology of unmanned aerial vehicles in complex GNSS-denied environments[D]. Xi’an: School of Automation, Northwestern Polytechnical University, 2021: 17-38 (in Chinese). | |
43 | 韩国良. 无人机自主返航仿生导航方法研究[D]. 长沙: 国防科技大学, 2021: 8-31. |
HAN G L. Bionic navigation method for autonomous return of UAV[D].Changsha: National University of Defense Technology, 2021: 8-31 (in Chinese). | |
44 | HARRIS C, STEPHENS M. A combined corner and edge detector[C]∥Proceedings ofthe Alvey Vision Conference 1988. Manchester: Alvey Vision Club, 1988: 147-151. |
45 | 蔡香玉, 盛业华, 黄毅, 等. 融合Harris-Laplace算子的SURF算法与无人机影像匹配[J]. 测绘科学, 2018, 43(11): 20-26, 32. |
CAI X Y, SHENG Y H, HUANG Y, et al. A SURF algorithm combined with Harris-Laplace and UAV images matching[J]. Science of Surveying and Mapping, 2018, 43(11): 20-26, 32 (in Chinese). | |
46 | 唐永鹤, 陶华敏, 卢焕章, 等. 一种基于Harris算子的快速图像匹配算法[J]. 武汉大学学报(信息科学版), 2012, 37(4): 406-409, 414. |
TANG Y H, TAO H M, LU H Z, et al. A fast image matching algorithm based on Harris operator[J]. Geomatics and Information Science of Wuhan University, 2012, 37(4): 406-409, 414 (in Chinese). | |
47 | MUR-ARTAL R, MONTIEL J M M, TARDÓS J D. ORB-SLAM: A versatile and accurate monocular SLAM system[J]. IEEE Transactions on Robotics, 2015, 31(5): 1147-1163. |
48 | MUR-ARTAL R, TARDÓS J D. ORB-SLAM2: An open-source SLAM system for monocular, stereo, and RGB-D cameras[J]. IEEE Transactions on Robotics, 2017, 33(5): 1255-1262. |
49 | RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB: An efficient alternative to SIFT or SURF[C]∥ 2011 International Conference on Computer Vision. Piscataway: IEEE Press, 2011: 2564-2571. |
50 | LUCAS B D, KANADE T. An iterative image registration technique with an application to stereo vision[C]∥ Proceedings of the 7th international joint conference on Artificial intelligence - Volume 2. New York: ACM, 1981: 674–679. |
51 | 张怀捷, 马静雅, 刘浩源, 等. 视觉与惯性融合的多旋翼飞行机器人室内定位技术[J]. 航空学报, 2023, 44(5): 426964. |
ZHANG H J, MA J Y, LIU H Y, et al. Indoor positioning technology of multi-rotor flying robot based on visual-inertial fusion[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(5): 426964 (in Chinese). | |
52 | SHI J B, TOMASI. Good features to track[C]∥1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2002: 593-600. |
53 | HE Y J, ZHAO J, GUO Y, et al. PL-VIO: Tightly-coupled monocular visual-inertial odometry using point and line features[J]. Sensors, 2018, 18(4): 1159. |
54 | ROSTEN E, DRUMMOND T. Fusing points and lines for high performance tracking[C]∥Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1. Piscataway: IEEE Press, 2005: 1508-1515. |
55 | GROMPONE VON GIOI R, JAKUBOWICZ J, MOREL J M, et al. LSD: A fast line segment detector with a false detection control[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(4): 722-732. |
56 | LYU Y, YUAN S H, XIE L H. Structure priors aided visual-inertial navigation in building inspection tasks with auxiliary line features[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(4): 3037-3048. |
57 | ZHENG F, TSAI G, ZHANG Z, et al. Trifo-VIO: Robust and efficient stereo visual inertial odometry using points and lines[C]∥2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). New York: ACM, 2018: 3686–3693. |
58 | GOMEZ-OJEDA R, MORENO F A, ZUÑIGA-NOËL D, et al. PL-SLAM: A stereo SLAM system through the combination of points and line segments[J]. IEEE Transactions on Robotics, 2019, 35(3): 734-746. |
59 | 王婧. 城市复杂环境下无人机自主定位与测姿技术研究[C]∥第十二届中国卫星导航年会论文集——S06 时间基准与精密授时. 北京:中国卫星导航系统管理办公室学术交流中心, 2021: 102-109. |
WANG J. Research on autonomous positioning and attitude measurement technology of UAV in complex urban environment[C]∥Proceedings of the 12th China Satellite Navigation Annual Conference—S06 Time Benchmark and Precision Timing. Beijing: Academic Exchange Center, China Satellite Navigation System Management Office, 2021: 102-109. | |
60 | YANG Y L, GENEVA P, ZUO X X, et al. Tightly-coupled aided inertial navigation with point and plane features[C]∥2019 International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2019: 6094-6100. |
61 | MOURIKIS A I, ROUMELIOTIS S I. A multi-state constraint Kalman filter for vision-aided inertial navigation[C]∥Proceedings 2007 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2007: 3565-3572. |
62 | YANG Y L, HUANG G Q. Observability analysis of aided INS with heterogeneous features of points, lines, and planes[J]. IEEE Transactions on Robotics, 2019, 35(6): 1399-1418. |
63 | FU Q, WANG J L, YU H S, et al. PL-VINS: Real-time monocular visual-inertial SLAM with point and line features[DB/OL]. arXiv preprint: 2009.07462, 2020. |
64 | BLOESCH M, OMARI S, HUTTER M, et al. Robust visual inertial odometry using a direct EKF-based approach[C]∥2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg: IEEE Press, 2015: 298-304. |
65 | SILVEIRA G, MALIS E, RIVES P. An efficient direct approach to visual SLAM[J]. IEEE Transactions on Robotics, 2008, 24(5): 969-979. |
66 | CHEN C H, WANG B, LU C X, et al. A survey on deep learning for localization and mapping: Towards the age of spatial machine intelligence[DB/OL]. arXiv preprint: 2006.12567, 2020. |
67 | ÇATAL O, JANSEN W, VERBELEN T, et al. LatentSLAM: Unsupervised multi-sensor representation learning for localization and mapping[C]∥2021 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2021: 6739-6745. |
68 | COSTANTE G, MANCINI M, VALIGI P, et al. Exploring representation learning with CNNs for frame-to-frame ego-motion estimation[J]. IEEE Robotics and Automation Letters, 2016, 1(1): 18-25. |
69 | 刘欣, 吴俊娴, 张占月. 一种基于卫星图像匹配的无人机自主定位算法[J]. 航天返回与遥感, 2021, 42(2): 130-138. |
LIU X, WU J X, ZHANG Z Y. A UAV autonomous positioning algorithm based on satellite image matching[J]. Spacecraft Recovery & Remote Sensing, 2021, 42(2): 130-138 (in Chinese). | |
70 | LIANG H J, SANKET N J, FERMÜLLER C, et al. SalientDSO: Bringing attention to direct sparse odometry[J]. IEEE Transactions on Automation Science and Engineering, 2019, 16(4): 1619-1626. |
71 | PAN J T, CANTON FERRER C, MCGUINNESS K, et al. SalGAN: Visual saliency prediction with generative adversarial networks[DB/OL]. arXiv preprint: 1701.01081, 2017. |
72 | WANG S, CLARK R, WEN H K, et al. DeepVO: Towards end-to-end visual odometry with deep recurrent convolutional neural networks[C]∥2017 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2017: 2043-2050. |
73 | 蓝朝桢, 阎晓东, 崔志祥, 等. 用于无人机自主绝对定位的实时特征匹配方法[J]. 测绘科学技术学报, 2020, 37(3): 264-268, 274. |
LAN C Z, YAN X D, CUI Z X, et al. Real-time feature matching method for the autonomous absolute location of UAV[J]. Journal of Geomatics Science and Technology, 2020, 37(3): 264-268, 274 (in Chinese). | |
74 | DETONE D, MALISIEWICZ T, RABINOVICH A. SuperPoint: Self-supervised interest point detection and description[C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Piscataway: IEEE Press, 2018: 337-33712. |
75 | LIANOS K N, SCHÖNBERGER J L, POLLEFEYS M, et al. VSO: Visual semantic odometry[C]∥European Conference on Computer Vision. Cham: Springer, 2018: 246-263. |
76 | LYNEN S, ACHTELIK M W, WEISS S, et al. A robust and modular multi-sensor fusion approach applied to MAV navigation[C]∥2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2013: 3923-3929. |
77 | MOURIKIS A I, ROUMELIOTIS S I. A dual-layer estimator architecture for long-term localization[C]∥2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE Press, 2008: 1-8. |
78 | 高翔, 张涛, 刘毅, 等. 视觉SLAM十四讲: 从理论到实践[M]. 北京: 电子工业出版社, 2017: 3-18, 257-258. |
GAO X, ZHANG T, LIU Y, et al. Fourteen lectures on visual SLAM: From theory to practice[M]. Beijing: Publishing House of Electronics Industry, 2017: 3-18, 257-258 (in Chinese). | |
79 | SIBLEY G, MATTHIES L, SUKHATME G. Sliding window filter with application to planetary landing[J]. Journal of Field Robotics, 2010, 27(5): 587-608. |
80 | KOTTAS D G, HESCH J A, BOWMAN S L, et al. On the consistency of vision-aided inertial navigation[M]∥Experimental Robotics. Berlin: Springer, 2013: 303-317. |
81 | FISCHLER M A, BOLLES R C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography[M]∥Readings in Computer Vision. Amsterdam: Elsevier, 1987: 726-740. |
82 | SCHÖNBERGER J L, FRAHM J M. Structure-from-motion revisited[C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2016: 4104-4113. |
83 | CIVERA J, DAVISON A J, MARTÍNEZ M J M. Inverse depth parametrization for monocular SLAM[J]. IEEE Transactions on Robotics, 2008, 24(5): 932-945. |
84 | MCLAUCHLAN P. The variable state dimension filter[R]. Guildford: University of Surrey, 1999. |
85 | MAYBECK P. Stochastic models, estimation and control, vol. 1[M]. New York: Academic, 1979: 10-20. |
86 | HUANG G P, MOURIKIS A I, ROUMELIOTIS S I. A first-estimates Jacobian EKF for improving SLAM consistency[C]∥Experimental Robotics. Berlin: Springer, 2009: 373-382. |
87 | LI M Y, MOURIKIS A I. High-precision, consistent EKF-based visual-inertial odometry[J]. The International Journal of Robotics Research, 2013, 32(6): 690-711. |
88 | ROUMELIOTIS S I, BURDICK J W. Stochastic cloning: A generalized framework for processing relative state measurements[C]∥Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292). Piscataway: IEEE Press, 2002: 1788-1795. |
89 | DONG-SI T C, MOURIKIS A I. Motion tracking with fixed-lag smoothing: Algorithm and consistency analysis[C]∥2011 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2011: 5655-5662. |
90 | HUANG G P, MOURIKIS A I, ROUMELIOTIS S I. An observability-constrained sliding window filter for SLAM[C]∥2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2011: 65-72. |
91 | NERURKAR E D, WU K J, ROUMELIOTIS S I. C-KLAM: Constrained keyframe-based localization and mapping[C]∥2014 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2014: 3638-3643. |
92 | KLEIN G, MURRAY D. Parallel tracking and mapping for small AR workspaces[C]∥2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality. Piscataway: IEEE Press, 2007: 225-234. |
93 | KAESS M, RANGANATHAN A, DELLAERT F. iSAM: Incremental smoothing and mapping[J]. IEEE Transactions on Robotics, 2008, 24(6): 1365-1378. |
94 | KAESS M, JOHANNSSON H, ROBERTS R, et al. iSAM2: Incremental smoothing and mapping using the Bayes tree[J]. International Journal of Robotics Research, 2012, 31(2): 216-235. |
95 | LATIF Y, CADENA C, NEIRA J. Robust graph SLAM back-ends: A comparative analysis[C]∥2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2014: 2683-2690. |
96 | SÜNDERHAUF N, PROTZEL P. Switchable constraints for robust pose graph SLAM[C]∥2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2012: 1879-1884. |
97 | AGARWAL P, TIPALDI G D, SPINELLO L, et al. Robust map optimization using dynamic covariance scaling[C]∥2013 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2013: 62-69. |
98 | OLSON E, AGARWAL P. Inference on networks of mixtures for robust robot mapping[J]. International Journal of Robotics Research, 2013, 32(7): 826-840. |
99 | LATIF Y, CADENA C, NEIRA J. Robust loop closing over time for pose graph SLAM[J]. International Journal of Robotics Research, 2013, 32(14): 1611-1626. |
100 | VASILEIOS T. Resilient submodular maximization for control and sensing[D]. Philadelphia: University of Penns⁃ylvania, 2018: 1-8. |
101 | HARSHAW C, FELDMAN M, WARD J, et al. Submodular maximization beyond non-negativity: Guarantees, fast algorithms, and applications[DB/OL]. arXiv preprint: 1904.09354, 2019. |
102 | BALLOTTA L, SCHENATO L, CARLONE L. Computation-communication trade-offs and sensor selection in real-time estimation for processing networks[J]. IEEE Transactions on Network Science and Engineering, 2020, 7(4): 2952-2965. |
103 | JAWAID S T, SMITH S L. Submodularity and greedy algorithms in sensor scheduling for linear dynamical systems[J]. Automatica, 2015, 61: 282-288. |
104 | MOUSAVI H K, MOTEE N. Estimation with fast feature selection in robot visual navigation[J]. IEEE Robotics and Automation Letters, 2020, 5(2): 3572-3579. |
105 | CARLONE L, KARAMAN S. Attention and anticipation in fast visual-inertial navigation[C]∥2017 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2017: 3886-3893. |
106 | KHOSOUSSI K, GIAMOU M, SUKHATME G S, et al. Reliable graphs for SLAM[J]. International Journal of Robotics Research, 2019, 38(2-3): 260-298. |
107 | CHEN Y B, HUANG S D, ZHAO L, et al. Cramér–Rao bounds and optimal design metrics for pose-graph SLAM[J]. IEEE Transactions on Robotics, 2021, 37(2): 627-641. |
108 | FALANGA D, FOEHN P, LU P, et al. PAMPC: perception-aware model predictive control for quadrotors[C]∥2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE Press, 2018: 1-8. |
109 | ALMADHOUN R, ABDULDAYEM A, TAHA T, et al. Guided next best view for 3D reconstruction of large complex structures[J]. Remote Sensing, 2019, 11(20): 2440. |
110 | CAO N N, LOW K H, DOLAN J M. Multi-robot informative path planning for active sensing of environmental phenomena: A tale of two algorithms[DB/OL]. arXiv preprint: 302.0723, 2013. |
111 | ZHANG Z C, SCARAMUZZA D. Fisher information field: An efficient and differentiable map for perception-aware planning[DB/OL]. arXiv preprint: 2008.03324, 2020. |
112 | SALARIS P, COGNETTI M, SPICA R, et al. Online optimal perception-aware trajectory generation[J]. IEEE Transactions on Robotics, 2019, 35(6): 1307-1322. |
113 | OPENAI, ACHIAM J,et al. GPT-4 technical report[DB/OL]. arXiv preprint: 2303.08774, 2023. |
114 | 苏翎菲, 化永朝, 董希旺, 等. 人与无人机集群多模态智能交互方法[J]. 航空学报, 2022, 43(S1): 727001. |
SU L F, HUA Y Z, DONG X W, et al. Human-UAV swarm multi-modal intelligent interaction methods[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(S1): 727001 (in Chinese). |
[1] | Jinchao MA, Yang LU, Liangquan WANG, Kuihui SONG. Active control test of tiltrotor near-field aeroacoustics based on higher harmonic control [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 528602-528602. |
[2] | Jun XIONG, Xiangpeng XIE, Zhi XIONG, Yuan ZHUANG, Yu ZHENG. Synchronized self⁃localization and relative⁃localization of unmanned swarms based on graph model [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729708-729708. |
[3] | Tao WANG, Xuefeng GAO, Jinping ZHU, Song DONG, Lianjun SUN, Kan ZHENG. Chatter online monitoring of robotic longitudinal⁃torsional ultrasonic edge trimming [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(13): 262-272. |
[4] | Chao WEN, Wenhan DONG, XIE Wujie, Ming CAI, Ri LIU. Distributed cooperative area search method for UAV swarms based on revisit mechanism [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(11): 327561-327561. |
[5] | LIN Jing, ZHANG Boyao, ZHANG Dayi, CHEN Min. Research status and prospect of fault diagnosis for gas turbine aeroengine [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(8): 626565-626565. |
[6] | ZHOU Yitao, YANG Yang, WU Zhigang, YANG Chao. Flight test for gust alleviation on a high aspect ratio UAV platform [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(6): 526126-526126. |
[7] | LI Ning, LIU Zhiyong, WANG Na, YANG Lei. Simulation on antenna servo control system based on DUEA [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(2): 324986-324986. |
[8] | YANG Chao, QIU Qisheng, ZHOU Yitao, WU Zhigang. Review of aircraft gust alleviation technology [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(10): 527350-527350. |
[9] | YE Zipeng, ZHOU Qingrui, WANG Hui. Distributed autonomous relative navigation method for spacecraft formation near solar L2 [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(2): 324145-324145. |
[10] | LIU Hao, WANG Wei, JIN Wei, NIU Wenchao, YANG Zhichun. Experiments of RFxLMS control for vertical tail buffeting [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(2): 224090-224090. |
[11] | YANG Qi, LIU Wei, YANG Xiaoliang, LI Hao. Multidisplinary interactions numerical simulation for active control of delta wing rock [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(12): 124685-124685. |
[12] | YIN Dongliang, HUANG Xiaoying, WU Yanjie, HE Youchen, XIE Jingwei. Target recognition decision method based on cloud model and improved D-S evidence theory [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(12): 324768-324768. |
[13] | WANG Wei, XING Chaoyang, FENG Wenshuai. State of the art and perspectives of autonomous navigation technology [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(11): 525049-525049. |
[14] | LIANG Shuai, YANG Lin, YANG Zhaoxu, XU Bin. Kalman filter based T-S fuzzy control for morphing aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(S2): 724274-724274. |
[15] | WU Ke, ZHANG Huazhen, LAN Lan, ZHOU Yang. Shape active control of a CFRP reflector and placement optimization of actuator [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(7): 222751-222751. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341