1 |
SALTELLI A. Sensitivity analysis for importance assessment[J]. Risk Analysis, 2002, 22(3): 579-590.
|
2 |
POHYA A A, WICKE K, KILIAN T. Introducing variance-based global sensitivity analysis for uncertainty enabled operational and economic aircraft technology assessment[J]. Aerospace Science and Technology, 2022, 122: 107441.
|
3 |
YUN W Y, LU Z Z, JIANG X. An efficient sampling approach for variance-based sensitivity analysis based on the law of total variance in the successive intervals without overlapping[J]. Mechanical Systems and Signal Processing, 2018, 106: 495-510.
|
4 |
BORGONOVO E. A new uncertainty importance measure[J]. Reliability Engineering & System Safety, 2007, 92(6): 771-784.
|
5 |
ZHANG F, XU X Y, CHENG L, et al. Global moment-independent sensitivity analysis of single-stage thermoelectric refrigeration system[J]. International Journal of Energy Research, 2019, 43(15): 9055-9064.
|
6 |
PAPAIOANNOU I, STRAUB D. Variance-based reliability sensitivity analysis and the FORM α-factors[J]. Reliability Engineering & System Safety, 2021, 210: 107496.
|
7 |
张磊刚, 吕震宙, 陈军. 基于失效概率的矩独立重要性测度的高效算法[J]. 航空学报, 2014, 35(8): 2199-2206.
|
|
ZHANG L G, LYU Z Z, CHEN J. An efficient method for failure probability-based moment-independent importance measure[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(8): 2199-2206 (in Chinese).
|
8 |
WANG P, LU Z Z, TANG Z C. An application of the Kriging method in global sensitivity analysis with parameter uncertainty[J]. Applied Mathematical Modelling, 2013, 37(9): 6543-6555.
|
9 |
YUN W Y, LU Z Z, HE P F, et al. Parameter global reliability sensitivity analysis with meta-models: A probability estimation-driven approach[J]. Aerospace Science and Technology, 2020, 106: 106040.
|
10 |
LIU P L, DER KIUREGHIAN A. Multivariate distribution models with prescribed marginals and covariances[J]. Probabilistic Engineering Mechanics, 1986, 1(2): 105-112.
|
11 |
DOBRIC J, SCHMID F. A goodness of fit test for copulas based on Rosenblatt’s transformation[J]. Computational Statistics & Data Analysis, 2007, 51(9): 4633-4642.
|
12 |
DENG J. Probabilistic characterization of soil properties based on the maximum entropy method from fractional moments: Model development, case study, and application[J]. Reliability Engineering & System Safety, 2022, 219: 108218.
|
13 |
张洪铭, 顾晓辉, 邸忆. 基于树形马氏链模型的可靠性分析方法[J]. 航空学报, 2019, 40(5): 222643.
|
|
ZHANG H M, GU X H, DI Y. Reliability analysis method based on Tree Markov Chain model[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5): 222643 (in Chinese).
|
14 |
PERNINGE M. Stochastic optimal power flow by multi-variate Edgeworth expansions[J]. Electric Power Systems Research, 2014, 109: 90-100.
|
15 |
METROPOLIS N, ROSENBLUTH A W, ROSENBLUTH M N, et al. Equation of state calculations by fast computing machines[J]. The Journal of Chemical Physics, 1953, 21(6): 1087-1092.
|
16 |
HASTINGS W K. Monte Carlo sampling methods using Markov chains and their applications[J]. Biometrika, 1970, 57(1): 97-109.
|
17 |
DUBOURG V, SUDRET B, DEHEEGER F. Metamodel-based importance sampling for structural reliability analysis[J]. Probabilistic Engineering Mechanics, 2013, 33: 47-57.
|
18 |
KLEIJNEN J P C. Regression and Kriging metamodels with their experimental designs in simulation: A review[J]. European Journal of Operational Research, 2017, 256(1): 1-16.
|
19 |
LI Y H, SHI J J, YIN Z F, et al. An improved high-dimensional kriging surrogate modeling method through principal component dimension reduction[J]. Mathematics, 2021, 9(16): 1985.
|
20 |
AFSHARI S S, ENAYATOLLAHI F, XU X, et al. Machine learning-based methods in structural reliability analysis: A review[J]. Reliability Engineering & System Safety, 2022, 219: 108223.
|
21 |
RIDLEY G, FORGET B. A simple method for rejection sampling efficiency improvement on SIMT architectures[J]. Statistics and Computing, 2021, 31(3): 30.
|
22 |
SIVULA T, MAGNUSSON M, VEHTARI A. Unbiased estimator for the variance of the leave-one-out cross-validation estimator for a Bayesian normal model with fixed variance[J/OL]. Communications in Statistics-Theory and Methods (2022-02-03)[2022-06-22]. .
|
23 |
ECHARD B, GAYTON N, LEMAIRE M. AK-MCS: An active learning reliability method combining Kriging and Monte Carlo Simulation[J]. Structural Safety, 2011, 33(2): 145-154.
|
24 |
SOBOL IM. On quasi-Monte Carlo integrations[J]. Mathematics and Computers in Simulation, 1998, 47: 103-112.
|