ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2022, Vol. 43 ›› Issue (10): 527408-527408.doi: 10.7527/S1000-6893.2022.27408
• Fluid Mechanics and Flight Mechanics • Previous Articles Next Articles
SUN Xiaofeng1, DONG Xu2, ZHANG Guangyu2, WANG Zhuo2, SUN Dakun1
Received:
2022-05-10
Revised:
2022-05-23
Published:
2022-07-21
Supported by:
CLC Number:
SUN Xiaofeng, DONG Xu, ZHANG Guangyu, WANG Zhuo, SUN Dakun. Progress review of application of eigenvalue theory to stability prediction[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(10): 527408-527408.
[1] VAHDATI M, LEE K B, SURESHKUMAR P. A review of computational aeroelasticity of civil fan blades[J]. International Journal of Gas Turbine, Propulsion and Power Systems, 2020, 11(4):22-35. [2] HALL K C, THOMAS J P, CLARK W S. Computation of unsteady nonlinear flows in cascades using a harmonic balance technique[J]. AIAA Journal, 2002, 40(5):879-886. [3] FLOREA R, HALL K C, CIZMAS P G A. Reduced-order modeling of unsteady viscous flow in a compressor cascade[J]. AIAA Journal, 1998, 36(6):1039-1048. [4] DIPRIMA R C, STUART J T. Hydrodynamic stability[J]. Journal of Applied Mechanics, 1983, 50(4b):983-991. [5] CHANDRASEKHAR S. Hydrodynamic and hydromagnetic stability[M]. New York:Dover Publications, 1981. [6] LIN C C. The theory of hydrodynamic stability[M]. London:Cambridge University Press, 1955. [7] HE L. Computational study of rotating-stall inception in axial compressors[J]. Journal of Propulsion and Power, 1997, 13(1):31-38. [8] GONG Y. A computational model for rotating stall and inlet distortions in multistage compressors[D]. Cambridge:Massachusetts Institute of Technology, 1999. [9] CHIMA R V. A three-dimensional unsteady CFD model of compressor stability[C]//Proceedings of ASME Turbo Expo 2006:Power for Land, Sea, and Air, 2008:1157-1168. [10] HOYING D A, TAN C S, VO H D, et al. Role of blade passage flow structurs in axial compressor rotating stall inception[J]. Journal of Turbomachinery, 1999, 121(4):735-742. [11] VO H D, TAN C S, GREITZER E M. Criteria for spike initiated rotating stall[J]. Journal of Turbomachinery, 2008, 130(1):155-165. [12] DAVIS R L, YAO J X. Computational approach for predicting stall inception in multistage axial compressors[J]. Journal of Propulsion and Power, 2007, 23(2):257-265. [13] ADAMCZYK J J, CELESTINA M L, GREITZER E M. The role of tip clearance in high-speed fan stall[J]. Journal of Turbomachinery, 1993, 115(1):28-38. [14] CHEN J P, JOHNSON B P, HATHAWAY M D, et al. Flow characteristics of tip injection on compressor rotating spike via time-accurate simulation[J]. Journal of Propulsion and Power, 2009, 25(3):678-687. [15] CHEN J P, HATHAWAY M D, HERRICK G P. Pre-stall behavior of a transonic axial compressor stage via time-accurate numerical simulation[J]. Journal of Turbomachinery, 2008, 130(4):353-368. [16] EMMONS H W, PEARSON C E, GRANT H P. Compressor surge and stall propagation[J]. Journal of Fluids Engineering, 1955, 77(4):455-467. [17] STENNING A H. Rotating stall and surge[J]. Journal of Fluids Engineering, 1980, 102(1):14-20. [18] SEARS W R. Rotating stall in axial compressors[J]. Zeitschrift für angewandte Mathematik und Physik, 1955, 6(6):429-455. [19] NENNI J, LUDWIG G. A theory to predict the inception of rotating stall in axial flow compressors[C]//7th Fluid and PlasmaDynamics Conference. Reston:AIAA, 1974. [20] BONNAURE L P. Modelling high speed multistage compressor stability[D]. Cambridge:Massachusetts Institute of Technology, 1991. [21] GREITZER E M. Surge and rotating stall in axial flow compressors-part I:Theoretical compression system model[J]. Journal of Engineering for Power, 1976, 98(2):190-198. [22] GREITZER E M. Surge and rotating stall in axial flow compressors-part II:Experimental results and comparison with theory[J]. Journal of Engineering for Power, 1976, 98(2):199-211. [23] MOORE F K, GREITZER E M. A theory of post-stall transients in axial compression systems:part I-Development of equations[J]. Journal of Engineering for Gas Turbines and Power, 1986, 108(1):68-76. [24] GREITZER E M, MOORE F K. A theory of post-stall transients in axial compression systems:part II-Application[J]. Journal of Engineering for Gas Turbines and Power, 1986, 108(2):231-239. [25] GORDON K. Three-dimensional rotating stall inception and effects of rotating tip clearance asymmetry in axial compressors[D]. Cambridge:Massachusetts Institute of Technology, 1999. [26] SUN X F. On the relation between the inception of rotating stall and casing treatment[C]//32nd Joint Propulsion Conference and Exhibit. Reston:AIAA, 1996. [27] SUN X F, SUN D K, YU W W. A model to predict stall inception of transonic axial flow fan/compressors[J]. Chinese Journal of Aeronautics, 2011, 24(6):687-700. [28] 于巍巍. 跨音风扇/压气机稳定性预测与扩稳机理研究[D]. 北京:北京航空航天大学, 2006. YU W W. Study on stability prediction and stability expansion mechanism of transonic fan/compressor[D]. Beijing:Beihang University, 2006 (in Chinese). [29] 侯睿伟. 风扇/压气机流动稳定性模型及扩稳方法研究[D]. 北京:北京航空航天大学, 2010. HOU R W. Flow stability model for fan/compressor and experimental investigations to improve the stall margin[D]. Beijing:Beihang University, 2010 (in Chinese). [30] 刘小华. 叶轮机流动稳定性通用理论与非定常机匣处理扩稳研究[D]. 北京:北京航空航天大学, 2013. LIU X H. General theory of turbine flow stability and research on unsteady casing treatment and stability expansion[D]. Beijing:Beihang University, 2013 (in Chinese). [31] 陈懋章. 粘性流体动力学理论及紊流工程计算[M]. 北京:北京航空学院出版社, 1986. CHEN M Z. Viscous fluid dynamics theory and turbulent engineering calculation[M]. Beijing:Beijing Institute of Aeronautics Press, 1986 (in Chinese). [32] MALIK M R. Finite-difference solution of the compressible stability eigenvalue problem:NASA Contractor Report 3584[R].Washington, D.C.:NASA, 1982. [33] HE C, MA Y F, LIU X H, et al. Aerodynamic instabilities of swept airfoil design in transonic axial-flow compressors[J]. AIAA Journal, 2018, 56(5):1878-1893. [34] HELMING K. Numerical analysis of sweep effects in shrouded propfan rotors[J]. Journal of Propulsion and Power, 1996, 12(1):139-145. [35] HAH C, WENNERSTROM A J. Three-dimensional flowfields inside a transonic compressor with swept blades[J]. Journal of Turbomachinery, 1991, 113(2):241-250. [36] WADIA A R, SZUCS P N. Inner workings of aerodynamic sweep[J]. Journal of Turbomachinery, 1998, 120(4):671-682. [37] XU D K, DONG X, ZHOU C H, et al. Effect of rotor axial blade loading distribution on compressor stability[J]. Aerospace Science and Technology, 2021, 119:107230. [38] THEODORSEN T. General theory of aerodynamic instability and the mechanism of flutter[J]. Journal of the Franklin Institute, 1935, 219(6):766-767. [39] DOWELL E. A modern course in aeroelasticity[M]. 5th ed. Switzerland:Springer, 2015. [40] WHITEHEAD D. Force and moment coefficient for vibrating aerofoils in cascade:R&M No.3254[R]. London:Aeronautical Research Council, 1960. [41] BENDIKSEN O O, FRIEDMANN P P. The effect of bending-torsion coupling on fan and compressor blade flutter[J]. Journal of Engineering for Power, 1982, 104(3):617-623. [42] KIELB R E, KAZA K R V. Flutter of swept fan blades[J]. Journal of Engineering for Gas Turbines and Power, 1985, 107(2):394-398. [43] KIELB R E, RAMSEY J K. Flutter of a fan blade in supersonic axial flow[J]. Journal of Turbomachinery, 1989, 111(4):462-467. [44] MARSHALL J G, IMREGUN M. A review of aeroelasticity methods with emphasis on turbomachinery applications[J]. Journal of Fluids and Structures, 1996, 10(3):237-267. [45] CARTA F O. Coupled blade-disk-shroud flutter instabilities in turbojet engine rotors[J]. Journal of Engineering for Power, 1967, 89(3):419-426. [46] WHITEHEAD D. Bending flutter of unstalled cascade blades at finite deflectio:R&M No.3386[R]. London:Aeronautical Research Council, 1962. [47] WHITEHEAD D. Torsional flutter of unstalled cascade blades at zero deflectio:R&M No.3431[R]. London:Aeronautical Research Council, 1966. [48] SUN Y, WANG X Y, DU L, et al. On the role of acoustic reflections from duct boundaries in fan flutter[J]. Journal of Sound and Vibration, 2020, 483:115465. [49] VAHDATI M, SMITH N, ZHAO F Z. Influence of intake on fan blade flutter[J]. Journal of Turbomachinery, 2015, 137(8):081002. [50] HALL K C, CRAWLEY E F. Calculation of unsteady flows in turbomachinery using the linearized Euler equations[J]. AIAA Journal, 1989, 27(6):777-787. [51] HE L, NING W. Efficient approach for analysis of unsteady viscous flows in turbomachines[J]. AIAA Journal, 1998, 36(11):2005-2012. [52] HALL K C, THOMAS J P, CLARK W S. Computation of unsteady nonlinear flows in cascades using a harmonic balance technique[J]. AIAA Journal, 2002, 40(5):879-886. [53] CLARK S. Design for coupled-mode flutter and non-synchronous vibration in turbomachinery[D]. Durham:Duke University, 2013. [54] WANG D X, HUANG X Q. Solution stabilization and convergence acceleration for the harmonic balance equation system[J]. Journal of Engineering for Gas Turbines and Power (Transactions of the ASME), 2017, 139(9):092503. [55] HUANG H, LIU W, PETRIE-REPAR P, et al. An efficient aeroelastic eigenvalue method for analyzing coupled-mode flutter in turbomachinery[J]. Journal of Turbomachinery, 2021, 143(2):021010. [56] DU P C, NING F F. Simulating periodic unsteady flows using cubic-spline based time collocation method[C]//Proceedings of ASME Turbo Expo 2013:Turbine Technical Conference and Exposition, 2013. [57] SANDBERG R D, MICHELASSI V. Fluid dynamics of axial turbomachinery:blade- and stage-level simulations and models[J]. Annual Review of Fluid Mechanics, 2022, 54:255-285. [58] CASONI M, BENINI E. A review of computational methods and reduced order models for flutter prediction in turbomachinery[J]. Aerospace, 2021, 8(9):242. [59] WANG D X, HUANG X Q. A complete rotor-stator coupling method for frequency domain analysis of turbomachinery unsteady flow[J]. Aerospace Science and Technology, 2017, 70:367-377. [60] CHAHINE C, VERSTRAETE T, HE L. A comparative study of coupled and decoupled fan flutter prediction methods under variation of mass ratio and blade stiffness[J]. Journal of Fluids and Structures, 2019, 85:110-125. [61] MOFFATT S, HE L. On decoupled and fully-coupled methods for blade forced response prediction[J]. Journal of Fluids and Structures, 2005, 20(2):217-234. [62] ZHONG G H, SUN X F. New simulation strategy for an oscillating cascade in turbomachinery using immersed-boundary method[J]. Journal of Propulsion and Power, 2009, 25(2):312-321. [63] VAHDATI M, SAYMA A I, MARSHALL J G, et al. Mechanisms and prediction methods for fan blade stall flutter[J]. Journal of Propulsion and Power, 2001, 17(5):1100-1108. [64] BRANDSTETTER C, JVNGST M, SCHIFFER H P. Measurements of radial vortices, spill forward, and vortex breakdown in a transonic compressor[J]. Journal of Turbomachinery, 2018, 140(6):061004. [65] HOLZINGER F, WARTZEK F, JVNGST M, et al. Self-excited blade vibration experimentally investigated in transonic compressors:rotating instabilities and flutter[J]. Journal of Turbomachinery, 2016, 138(4):041006. [66] VAHDATI M, SIMPSON G, IMREGUN M. Mechanisms for wide-chord fan blade flutter[J]. Journal of Turbomachinery, 2011, 133(4):041029. [67] STAPELFELDT S, VAHDATI M. Improving the flutter margin of an unstable fan blade[J]. Journal of Turbomachinery, 2019, 141(7):071006. [68] LEE K B, WILSON M, VAHDATI M. Numerical study on aeroelastic instability for a low-speed fan[J]. Journal of Turbomachinery, 2017, 139(7):071004. [69] STAPELFELDT S, BRANDSTETTER C. Non-synchronous vibration in axial compressors:Lock-in mechanism and semi-analytical model[J]. Journal of Sound and Vibration, 2020, 488:115649. [70] RAYLEIGH J W S. The theory of sound[M]. 2nd ed. London:Macmillan, 1896. [71] PURWAR N, MEINDL M, POLIFKE W. Comparison of model order reduction methods in thermo-acoustic stability analysis[J]. Journal of Engineering for Gas Turbines and Power, 2022, 144(2):021004. [72] CROCCO L. Aspects of combustion stability in liquid propellant rocket motors part I:Fundamentals. low frequency instability with monopropellants[J]. Journal of the American Rocket Society, 1951, 21(6):163-178. [73] DOWLING A P. Nonlinear self-excited oscillations of a ducted flame[J]. Journal of Fluid Mechanics, 1997, 346:271-290. [74] NOIRAY N, DUROX D, SCHULLER T, et al. A unified framework for nonlinear combustion instability analysis based on the flame describing function[J]. Journal of Fluid Mechanics, 2008, 615:139-167. [75] DOWLING A P. The calculation of thermoacoustic oscillations[J]. Journal of Sound and Vibration, 1995, 180(4):557-581. [76] POINSOT T. Prediction and control of combustion instabilities in real engines[J]. Proceedings of the Combustion Institute, 2017, 36(1):1-28. [77] BELLUCCI V, FLOHR P, PASCHEREIT C O, et al. On the use of Helmholtz resonators for damping acoustic pulsations in industrial gas turbines[J]. Journal of Engineering for Gas Turbines and Power, 2004, 126(2):271-275. [78] STOW S R, DOWLING A P. Modelling of circumferential modal coupling due to Helmholtz resonators[C]//Proceedings of ASME Turbo Expo 2003, Collocated With the 2003 International Joint Power Generation Conference, 2003:129-137. [79] LAHIRI C, BAKE F. A review of bias flow liners for acoustic damping in gas turbine combustors[J]. Journal of Sound and Vibration, 2017, 400:564-605. [80] ELDREDGE J D, DOWLING A P. The absorption of axial acoustic waves by a perforated liner with bias flow[J]. Journal of Fluid Mechanics, 2003, 485:307-335. [81] RUPP J, CARROTTE J, MACQUISTEN M. The use of perforated damping liners in aero gas turbine combustion systems[J]. Journal of Engineering for Gas Turbines and Power, 2012, 134(7): [82] LI L, GUO Z H, ZHANG C Y, et al. A passive method to control combustion instabilities with perforated liner[J]. Chinese Journal of Aeronautics, 2010, 23(6):623-630. [83] NAMBA M, FUKUSHIGE K. Application of the equivalent surface source method to the acoustics of duct systems with non-uniform wall impedance[J]. Journal of Sound and Vibration, 1980, 73(1):125-146. [84] WANG X Y, SUN X F. A new segmentation approach for sound propagation in non-uniform lined ducts with mean flow[J]. Journal of Sound and Vibration, 2011, 330(10):2369-2387. [85] ZHANG G Y, WANG X Y, LI L, et al. Effects of perforated liners on controlling combustion instabilities in annular combustors[J]. AIAA Journal, 2020, 58(7):3100-3114. [86] ZHANG G Y, WANG X Y, LI L, et al. Control of thermoacoustic instability with a drum-like silencer[J]. Journal of Sound and Vibration, 2017, 406:253-276. [87] ZHANG G, WANG X, JING X, et al. Control effects of perforated liners on the combustion instability in an annular combustor[C]//GPPS Global, 2019. [88] QIN L, WANG X Y, ZHANG G Y, et al. Effect of nonlinear flame response on the design of perforated liners in suppression of combustion instability[J]. Journal of Sound and Vibration, 2021, 511:116314. |
[1] | Zeyong YIN, Gaiqi LI, Jiancheng SHI, Yueqian YIN. Concept, method and practice of advanced versatile core engine derivative [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 29713-029713. |
[2] | Weina HUANG, Fangjuan LI, Hongbin QI. Preliminary investigation and thoughts on aero-engine digital engineering development [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529693-529693. |
[3] | Ruixian MA, Xin WANG, Kaiming WANG, Bin LI, Mingfu LIAO, Siji WANG. Rubbing experimental study on labyrinth and rubber⁃coated case for aero⁃engines [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 628350-628350. |
[4] | Yuan XIAO, Kun FENG, Minghui HU, Zhinong JIANG. Extraction method for unsteady vibration components of aero-engine rotors [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(3): 228158-228158. |
[5] | Yingjiao HU, Feng XU, Zhijun YANG. Overview of aero-engine ice testing capability [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729449-729449. |
[6] | Neng WAN, Qixin ZHUANG, Yanheng GUO, Zhiyong CHANG, Dao WANG. Sampling strategy for on-machine measurement of aero-engine blade under constraint of fitting accuracy [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(7): 427151-427151. |
[7] | Miaodong ZHAO, Dianyin HU, Jianxing MAO, Haihe SUN, Shiyong QIN, Yuanxing GU, Rongqiao WANG, Tengyue TIAN, Lin YAN, Zhixing XIAO. Simulating specimen for low cycle fatigue of aero-engine disc: Design and experiment [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(18): 228320-228320. |
[8] | Xiaofeng SUN, Guangyu ZHANG, Xiaoyu WANG, Lei LI, Xiangyang DENG, Ronghui CHENG. Research progress in aero-engine combustion instability prediction and control [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(14): 628733-628733. |
[9] | Pei PENG, Yongping ZHAO, Yuwei WANG. New method for automatic and rapid mining of aero-engine operating patterns [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(11): 327659-327659. |
[10] | Wanli ZHAO, Yingqing GUO, Kejie XU, Cansen WANG, Haojie YING, Xinxin TAO. Review of key technologies for fault diagnosis and accommodation for multi⁃electric distributed engine control system [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(10): 27519-027519. |
[11] | ZHANG Shuo, LIU Zhiwen. Structured Bayesian sparse representation of aero-engine bearing failures [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 625056-625056. |
[12] | ZHANG Zhongqiang, ZHANG Xin, WANG Jiaxu, LIU Zhiwen. Reweighted kurtogram for aero-engine fault diagnosis [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 625445-625445. |
[13] | HAN Songyu, SHAO Haidong, JIANG Hongkai, ZHANG Xiaoyang. Intelligent fault diagnosis of aero-engine high-speed bearings using enhanced CNN [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 625479-625479. |
[14] | DU Jianjian, PAN Xiande, LIU Tianyi. Indirect measurement method for axial load of aero-engine angular contact ball bearing [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 625457-625457. |
[15] | LIU Jiaqi, FENG Yunwen, LU Cheng, XUE Xiaofeng, PAN Weihuang. Safety analysis of aero-engine operation based on intelligent neural network [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 625375-625375. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341