[1] HE F S, HE Y, LIU Z G, et al. Research and development on applications of convolutional neural networks of radar automatic target recognition[J]. Journal of Electronics & Information Technology, 2020, 42(1): 119-131 (in Chinese). 贺丰收, 何友, 刘准钆, 等. 卷积神经网络在雷达自动目标识别中的研究进展[J]. 电子与信息学报, 2020, 42(1): 119-131. [2] [3] SUN Z Z, DAI M C, LENG X G, et al. An anchor-free detection method for ship targets in high-resolution SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 7799-7816. [4] ZHANG T W, ZHANG X L, KE X. Quad-FPN: A novel quad feature pyramid network for SAR ship detection[J]. Remote Sensing, 2021, 13(14): 2771. [5] DENG Z P, SUN H, ZHOU S L, et al. Learning deep ship detector in SAR images from scratch[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(6): 4021-4039. [6] ZHANG P, TANG J S, ZHONG H P, et al. Self-trained target detection of radar and sonar images using automatic deep learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-14. [7] ZHANG X H, YAO L B, Lü Y F, et al. Center based model for arbitrary-oriented ship detection in remote sensing images[J]. Acta Photonica Sinica, 2020, 49(4): 0410005 (in Chinese). 张筱晗, 姚力波, 吕亚飞, 等. 基于中心点的遥感图像多方向舰船目标检测[J]. 光子学报, 2020, 49(4): 0410005. [8] HE Y S, GAO F, WANG J, et al. Learning polar encodings for arbitrary-oriented ship detection in SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 3846-3859. [9] LI J W, XU C A, SU H, et al. Ship detection in SAR images based on recurrent feature pyramid network and rotatable bounding box[J]. Journal of Applied Remote Sensing, 2021, 15: 044502. [10] ZHOU X Y, WANG D Q, KR?HENBüHL P. Objects as points[DB/OL]. arXiv preprint: 1904.07850, 2019. [11] [12] [13] [14] LAW H, DENG J. CornerNet: Detecting objects as paired keypoints[J]. International Journal of Computer Vision, 2020, 128(3): 642-656. [15] [16] [17] [18] [19] |