[1] Colonna F, Easley G R. Generalized discrete Radon transforms and their use in the ridgelet transform. Journal of Mathematical Imaging and Vision, 2005, 23(2): 145-165.[2] Candès E J, Donoho M N. New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities. Communications on Pure and Applied Mathematics, 2004, 57(2): 216-266.[3] Kingsbury N G. Complex wavelets for shift invariant analysis and filtering of signals. Journal of Applied and Computational Harmonic Analysis, 2001, 10(3): 234-253.[4] Kingsbury N G.Image processing with complex wavelets. Philosophical Transactions: Mathematical Physical and Engineering Sciences, 1999, 357(1760): 2543-2560.[5] Kingsbury N.Shift invariant properties of the dual-tree complex wavelet transform. IEEE International Conference on Acoustics, Speech, and Signal Processing, 1999, 47(3): 1221-1224.[6] Donoho M N, Vetterli M. Contourlets: a directional multiresolution image representation. Proceedings of IEEE International Conference on Image Processing, 2002: 357-360.[7] Lian Q S, Chen S Z. Sparse image representation using the analytic contourlet transform and its application on compressed sensing. Acta Electronica Sinica, 2010, 38(6): 1293-1298. (in Chinese) 练秋生, 陈书贞. 基于解析轮廓波变换的图像稀疏表示及其在压缩传感中的应用. 电子学报,2010,38(6): 1293-1298.[8] Guo K, Kutyniok G, Labate D. Sparse multidimensional representations using anisotropic dilation and shear operators. Proceedings of the International Conference on the Interactions Between Wavelets and Splines, 2005: 189-201.[9] Easley G, Labate D, Lim W Q. Sparse directional image representation using the discrete Shearlets transform. Applied and Computational Harmonic Analysis, 2008, 25(1): 25-46.[10] Kutyniok G, Lim W Q. Image separation using wavelet and shearlets. Lecture Notes in Computer Science, 2012, 6920: 416-430.[11] Kutyniok G, Lemvig J, Lim W Q. Compactly supported shearlets. Springer Proceedings in Mathematics, 2012, 13: 163-186.[12] Lim W Q. The discrete Shearlets transform: a new directional transform and compactly supported Shearlets frames. IEEE Transactions on Image Processing, 2010, 19(5): 1166-1180.[13] Kutyniok G, Labate D. Optimally sparse multidimensional representation using shearlets. SIAM Journal on Mathematical Analysis, 2007, 39 (1): 298-318.[14] Qin H L, Li J, Zhou H X, et al. Infrared dim and small target background suppression using shearlet transform. Journal of Infrared and Millimeter Waves, 2011, 30(2): 162-166. (in Chinese) 秦翰林, 李佳, 周慧鑫, 等. 采用剪切波变换的红外弱小目标背景抑制. 红外与毫米波学报, 2011, 30(2): 162-166.[15] Hou B, Hu Y H, Jiao L C. Improved Shearlet edge detection for waters of SAR image. Journal of Image and Graphics, 2011, 15(10): 1549-1554. (in Chinese) 侯彪, 胡育辉, 焦李成. SAR图像水域的改进Shearlet边缘检测. 中国图像图形学报, 2011, 15(10): 1549-1554.[16] Hu H Z, Sun H, Deng C Z, et al. Image de-noising algorithm based on Shearlet transform. Journal of Computer Applications, 2010, 30(6): 1562-1564. (in Chinese) 胡海智, 孙辉, 邓承志, 等. 基于Shearlet变换的图像去噪算法. 计算机应用, 2010, 30(6): 1562-1564.[17] Goodman J W. Some fundamental properties of speckle.Journal Optical Society America, 1976, 6(11): 1145-1150.[18] Sveinsson J R, Atli B J. Almost translation invariant wavelet transformations for speckle reduction of SAR images. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(10): 2404-2408.[19] Portilla J, Strela V, Wainwright M J, et al. Image denoising using a scale mixture of Gaussians in the wavelet domain. IEEE Transactions on Image Processing, 2003, 12(11): 1338-1351.[20] Cao H W, Tian W, Deng C Z. Shearlet-based image denoising using bivariate model. IEEE International Conference on Progress in Informatics and Computing (PIC), 2010: 818-821.[21] Hou B, Zhang X H, Bu X M, et al. SAR image despeckling based on nonsubsampled Shearlet transform. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(3): 809-823. |