[1] SUN Y, SUN H Y, BAI P, et al. Real-time automatic detection of weld defects in X-ray images[J]. Transactions of the China Welding Institution, 2004, 25(2): 115-118, 122 (in Chinese). 孙怡, 孙洪雨, 白鹏, 等. X射线焊缝图像中缺陷的实时检测方法[J]. 焊接学报, 2004, 25(2): 115-118, 122. [2] STAUDE A, BARTSCHER M, EHRIG K, et al. Quantification of the capability of micro-CT to detect defects in castings using a new test piece and a voxel-based comparison method[J]. NDT & E International, 2011, 44(6): 531-536. [3] WANG F, ZHU J J. Application of machine vision in welding defect detection in complex environment[J]. Welding Technology, 2017, 46(5): 127-133 (in Chinese). 王飞, 朱建江. 机器视觉在复杂环境下焊接缺陷检测的应用研究[J]. 焊接技术, 2017, 46(5): 127-133. [4] MIN X J. The development and design of the repair welding procedure of the thick wall duplex stainless steel piping[J]. China Welding, 2017(1): 60-64. [5] ZHI Z L, JIANG H Q, YANG D Y, et al. A deep learning fusion model of wave and image data for weld defect recognition[J]. Journal of Xi'an Jiaotong University, 2021, 55(5): 73-82 (in Chinese). 支泽林, 姜洪权, 杨得焱, 等. 图谱数据深度学习融合模型及焊缝缺陷识别方法[J]. 西安交通大学学报, 2021, 55(5): 73-82. [6] YANG L, JIANG H Q. Weld defect classification in radiographic images using unified deep neural network with multi-level features[J]. Journal of Intelligent Manufacturing, 2021, 32(2): 459-469. [7] JIANG H Q, HE S, GAO J M, et al. An improved convolutional neural network for weld defect recognition[J]. Journal of Mechanical Engineering, 2020, 56(8): 235-242 (in Chinese). 姜洪权, 贺帅, 高建民, 等. 一种改进卷积神经网络模型的焊缝缺陷识别方法[J]. 机械工程学报, 2020, 56(8): 235-242. [8] FAN D, HU A D, HUANG J K, et al. X-ray image defect recognition method for pipe weld based on improved convolutional neural network[J]. Transactions of the China Welding Institution, 2020, 41(1): 7-11, 97 (in Chinese). 樊丁, 胡桉得, 黄健康, 等. 基于改进卷积神经网络的管焊缝X射线图像缺陷识别方法[J]. 焊接学报, 2020, 41(1): 7-11, 97. [9] LIU T Y, BAO J S, WANG J L, et al. A hybrid CNN–LSTM algorithm for online defect recognition of CO2 welding[J]. Sensors, 2018, 18(12): 4369. [10] [11] FERGUSON M, AK R, LEE Y T T, et al. Detection and segmentation of manufacturing defects with convolutional neural net-works and transfer learning[DB/OL]. arXiv preprint:1808.02518, 2018. [12] ZENG J F, LI Y M, YANG H X, et al. Environmental sound classification method based on multilevel residual network[J]. Journal of Data Acquisition & Processing, 2021, 36(5): 960-968 (in Chinese). 曾金芳, 李友明, 杨恢先, 等. 基于多级残差网络的环境声音分类方法[J]. 数据采集与处理, 2021, 36(5): 960-968. [13] CHANG H, RAO Z Q, LI Y C, et al. Research on crack detection algorithm of railway tunnel based on improved residual network[J]. Journal of Northeast Normal University (Natural Science Edition), 2021, 53(3): 56-63 (in Chinese). 常惠, 饶志强, 李益晨, 等. 基于改进残差网络的铁路隧道裂缝检测算法研究[J]. 东北师大学报(自然科学版), 2021, 53(3): 56-63. [14] AL-FALLUJI R A, DALAF KATHEETH Z, ALATHARI B. Automatic detection of COVID-19 using chest X-ray images and modified ResNet18-based convolution neural networks[J]. Computers, Materials & Continua, 2021, 66(2): 1301-1313. |