[1] VIRKLER D A, HILLBERRY B M, GOEL P K. The statistical nature of fatigue crack propagation[J]. Journal of Engineering Materials and Technology, 1979, 101(2): 148-153. [2] 邢修三. 疲劳断裂非平衡统计理论: Ⅰ.疲劳微裂纹长大的位错机理和统计特性[J]. 中国科学 (A辑), 1986, 16(5): 501-510. XING X S. Nonequilibrium statistical theory of fatigue fracture——Ⅰ. Dislocation mechanism and statistical properties of fatigue microcrack growth[J]. Science in China, SerA, 1986, 16(5): 501-510 (in Chinese). [3] KRAUSZ A S. Fracture Kinetics of crack growth [M]. Dordrecht:Kluwer Academic Publishers, 1988. [4] BOGDANOFF J L, KOZIN F. Probabilistic models of cumulative damage[M]. New York: Wiley-Interscience, 1985. [5] BEN ABDESSALEM A, AZAÏS R, TOUZET-CORTINA M, et al. Stochastic modelling and prediction of fatigue crack propagation using piecewise-deterministic Markov processes[J]. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 2016, 230(4): 405-416. [6] HAO S H, YANG J, BERENGUER C. Nonlinear step-stress accelerated degradation modelling considering three sources of variability[J]. Reliability Engineering & System Safety, 2018, 172: 207-215. [7] SI X S, WANG W B, HU C H, et al. Remaining useful life estimation-A review on the statistical data driven approaches[J]. European Journal of Operational Research, 2011, 213(1): 1-14. [8] LIN Y K, YANG J N. On statistical moments of fatigue crack propagation[J]. Engineering Fracture Mechanics, 1983, 18(2): 243-256. [9] LIN Y K, YANG J N. A stochastic theory of fatigue crack propagation[J]. AIAA Journal, 1985, 23(1): 117-124. [10] LI Y Z, ZHU S P, LIAO D, et al. Probabilistic modeling of fatigue crack growth and experimental verification[J]. Engineering Failure Analysis, 2020, 118: 104862. [11] SOBCZYK K. Modelling of random fatigue crack growth[J]. Engineering Fracture Mechanics, 1986, 24(4): 609-623. [12] SPENCER B F, TANG J, ARTLEY M E. Stochastic approach to modeling fatigue crack growth[J]. AIAA Journal, 1989, 27(11): 1628-1635. [13] SHARIFF A A. A stochastic paris-erdogan model for fatigue crack growth using two-state model[J]. Bulletin of the Malaysian Mathematical Society, 2008, 1(1): 97-108. [14] EROGLU E, GUNEY I, GUNES I. Fatigue test with stochastic differential equation modeling[J]. Acta Physica Polonica A, 2012, 121(1): 36-38. [15] ALLEN E J. SDE models with exponential drift and diffusion for approximating fatigue crack growth dynamics[J]. Engineering Fracture Mechanics, 2018, 200: 75-85. [16] GARDINER C W. Handbook of stochastic methods for physics, chemistry and the natural sciences[M]. Berlin: Springer Berlin Heidelberg, 1985. [17] LIU B D. Uncertainty theory[M]. Berlin: Springer Berlin Heidelberg, 2015. [18] LIU B D. Fuzzy process, hybrid process and uncertain process[J]. Journal of Uncertain Systems, 2008, 2(1): 3-16. [19] LI X Y, TAO Z, WU J P, et al. Uncertainty theory based reliability modeling for fatigue[J]. Engineering Failure Analysis, 2021, 119: 104931. [20] WOLF E. Fatigue crack closure under cyclic tension[J]. Engineering Fracture Mechanics, 1970, 2(1): 37-45. [21] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 金属材料 疲劳试验 疲劳裂纹扩展方法: GB/T 6398—2017[S]. 北京: 中国标准出版社, 2017. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Metallic materials—Fatigue testing—Fatigue crack growth method: GB/T 6398—2017[S]. Beijing: Standards Press of China, 2017 (in Chinese). [22] ZHANG W, LIU Y M. SEM testing for crack closure investigation and virtual crack annealing model development[J]. International Journal of Fatigue, 2012, 43: 188-196. [23] HU D Y, SU X, LIU X, et al. Bayesian-based probabilistic fatigue crack growth evaluation combined with machine-learning-assisted GPR[J]. Engineering Fracture Mechanics, 2020, 229: 106933. [24] 康锐. 确信可靠性理论与方法[M]. 北京: 国防工业出版社, 2020. KANG R. Belief reliability theory and methodology[M]. Beijing: National Defense Industry Press, 2020 (in Chinese). [25] LIU Z. Generalized moment estimation for uncertain differential equations[J]. Applied Mathematics and Computation, 2021, 392: 125724. [26] LI X Y, CHEN W B, LI F R, et al. Reliability evaluation with limited and censored time-to-failure data based on uncertainty distributions[J]. Applied Mathematical Modelling, 2021, 94: 403-420. |