[1] 杨承宇, 张靖周, 单勇. 单边膨胀喷管红外辐射特性的数值模拟[J]. 航空学报, 2010, 31(10):1920-1926. YANG C Y, ZHANG J Z, SHAN Y. Numerical simulation on infrared radiation characteristics of single expansion ramp nozzles[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(10):1920-1926(in Chinese). [2] NANGIA R K, PALMER M E. A comparative study of UCAV type wing platforms-aero performance & stability considerations:AIAA-2005-5078[R]. Reston:AIAA, 2005. [3] 徐啟云, 王洁, 郝文渊, 等. 国外无人战斗机发展历程和趋势[J]. 飞航导弹, 2016, (3):28-32. XU Q Y, WANG J, HAO W Y, et al. Development history and trend of foreign UCAVs[J]. Aerodynamic Missile Journal, 2016, (3):28-32(in Chinese). [4] 马怡, 潘志雄, 罗烈. X-47B飞翼气动布局设计分析[J]. 航空科学技术, 2014, 25(12):1-4. MA Y, PAN Z X, LUO L. X-47B flying wing aerodynamic configuration analysis[J]. Aeronautical Science & Technology, 2014,25(12):1-4(in Chinese). [5] 符成山, 吴惟诚, 雷东. 美军无人机装备现状及发展趋势[J]. 飞航导弹, 2019(9):46-52. FU C S, WU W C, LEI D. Present situation and development trend of UAV equipment in US military[J]. Aerodynamic Missile Journal, 2019(9):46-52(in Chinese). [6] 魏国福, 周军, 邢娅. 欧洲神经元无人攻击机发展历程[J]. 飞航导弹, 2013(8):23-26. WEI G F, ZHOU J, XING Y. The development of European neuron unmanned attack aircraft[J]. Aerodynamic Missile Journal, 2013(8):23-26(in Chinese). [7] 潘金宽. 俄军重型无人机发展现状[J]. 军事文摘, 2019(9):24-27. PAN J K. Development status of Russian heavy UAV[J]. Military Digest, 2019(9):24-27(in Chinese). [8] 单勇,陈著,尚守堂,等. 与飞机融合的单边膨胀喷管排气系统气动和红外辐射特征数值计算[J]. 航空发动机,2014, 40(2):1-5. SHAN Y, CHEN Z,SHANG S T, et al. Aerodynamic and infrared radiation characteristics numerical simulation on single expansion ramp nozzle within aircraft[J]. Aeroengine, 2014, 40(2):1-5(in Chinese). [9] 张少丽, 单勇, 张靖周, 等. 单边膨胀矢量喷管气动和红外特性研究[J]. 航空学报, 2012, 33(8):1406-1416. ZHANG S L, SHANG Y, ZHANG J Z, et al. Research on the aerodynamic and infrared radiation characteristics of single expansion ramp vector nozzle[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(8):1406-1416(in Chinese). [10] 徐嘉,蔡晋生,刘秋洪. 战斗机后体流场数值模拟与减阻优化设计[J].空气动力学学报,2014,32(1):38-44. XU J, CAI J S, LIU Q H. Numerical investigation of jet interactions and optimization design of drag reduction for the after body of jet aircraft[J]. Acta Aerodynamica Sinica, 2014, 32(1):38-44(in Chinese). [11] 杨承宇.S弯通道单边膨胀喷管气动和红外特性数值研究[D]. 南京:南京航空航天大学, 2019. YANG C Y. Numerical investigation on pneumatic performances and infrared radiation characteristics of an s-shaped tunnel single expansion ramp nozzle[D]. Naijing:Nanjing University of Aeronautics and Astronautics, 2019(in Chinese). [12] 李春鹏, 刘铁中, 钱战森, 等. 无尾布局后体超声速航向增稳设计方法[J]. 航空学报, 2020, 41(6):523447. LI C P, LIU T Z, QIAN Z S, et al. Afterbody supersonic directional stability augmentation method for tailless configuration[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6):523447(in Chinese). [13] 朱文庆, 肖志祥, 符松. 使用IDDES方法预测飞行速度对喷流噪声的影响[J]. 空气动力学学报, 2018, 36(3):463-469. ZHU W Q, XIAO Z X, FU S. Effects off light velocity on jet noise predicted by IDDES method[J]. Acta Aerodynamica Sinica, 2018, 36(3):463-469(in Chinese). [14] VISWANATHAN K. Aeroacoustics of hot jets[J]. Journal of Fluid Mechanics, 2004, 516:39-82. [15] VISWANATHAN K, CZECH M. Measurement and modeling of effect of forward flight on jet noise[J]. AIAA Journal, 2011, 49(1):216-234. [16] 朱志斌, 程晓丽, 潘宏禄. 超声速喷流混合流场大涡模拟[J]. 航空动力学报, 2019, 34(1):210-216. ZHU Z B, CHENG X L, PAN H L. Large eddy simulation of supersonic jet mixing flow[J]. Journal of Aero Space Power, 2019, 34(1):210-216(in Chinese). [17] 刘旭亮, 张树海. 二维激波与剪切层相互作用的直接数值模拟研究[J]. 力学学报, 2013, 45(1):61-75. LIU X L, ZHANG S H. Direct numerical simulation of the interaction of two-dimensional shock wave and shear layer[J]. Acta Mechanica Sinica, 2013, 45(1):61-75(in Chinese). [18] TAM C K, PASTOUCHENKO N, VISWANATHAN K, et al. Computation of shock cell structure of dual-stream jets for noise prediction[J]. AIAA Journal, 2008, 46(11):2857-2867 [19] TAM C K, PASTOUCHENKO N, VISWANATHAN K, et al. Broadband shock-cell noise from dual stream jets[J]. Journal of Soundand Vibration, 2009, 324(3):861-891. [20] NORUM T D, SEINER J M. Measurements of mean static pressure and farfield acoustics of shock containing supersonic jets:NASA TM-84521[R]. Washington,D.C.:NASA, 1982. [21] 李栋, 焦予秦, 宋科. 喷流-外流干扰流场数值模拟[J]. 航空学报, 2008, 29(2):292-296. LI D, JIAO Y Q, SONG K. Numerical simulation of external flow interfered by jet flow[J]. Acta Aeronauticaet Astronautica Sinica, 2008, 29(2):292-296(in Chinese). [22] XIAO L H, XIAO Z X, DUAN Z W, et al. Improved-delayed-detached-eddy simulation of cavity-induced transition in hypersonic boundary layer[J]. International Journal of Heat and Fluid Flow, 2015, 51:138-150. [23] SPALART P R. Detached-eddy simulation[J]. Annual Review of Fluid Mechanics, 2009, 41:181-202. [24] 高速风洞和低速风洞测力试验精度指标:GJB 1069-1991[S]. 北京:国防科学技术工业委员会, 1991. Requirement for force-test precision of high and low speed wind tunnels:GJB 1069-1991[S]. Beijing:China Commission of Science Technology and Industry for National Defense, 1991(in Chinese). [25] 刘晞远, 胡昊颖, 吴珊, 等. AR模型的谱分辨率及小信噪比下的性能分析[J]. 船舶电子工程, 2018, 38(7):126-131. LIU X Y, HU H Y, WU S, et al. Performance analysis on spectrum resolution ratio and small noise-signal ratio of ar model-based power spectrum estimation[J]. Ship Electronic Engineering, 2018, 38(7):126-131(in Chinese). [26] 刘明晓, 王旭光. 基于MATLAB实现的AR模型功率谱估计[J]. 电子设计工程, 2017, 25(17):129-132. LIU M X, WANG X G. Performance analysis on spectrum resolution ratio and small noise-signal ratio of AR model-based power spectrum estimation[J]. Electronic Design Engineering, 2017, 25(17):129-132(in Chinese). |