[1] |
徐燊, 朱顺鹏, 郝永振, 等. 基于临界面-损伤参量法的高压涡轮盘多轴疲劳寿命预测[J]. 航空学报, 2018, 39(9):221930. XU S, ZHU S P, HAO Y Z, et al. Multiaxial fatigue life prediction of an HPT disc based on critical plane-damage parameter[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(9):221930(in Chinese).
|
[2] |
冯引利. 考虑表面加工状态的FGH96盘LCF寿命及破裂转速分析方法研究[D]. 南京:南京航空航天大学, 2017:1-2. FENG Y L. Research on analysis method for FGH96 disc's LCF life and burst speed considering surface machining status[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2017:1-2(in Chinese).
|
[3] |
北京航空材料研究院. 航空材料技术[M]. 第1版. 北京:航空工业出版社, 2013:107-108. Beijing Institute of Aeronautical Materials. Materials technology of aeronautics[M]. 1 st ed. Beijing:Aviation Industry Press, 2013:107-108(in Chinese).
|
[4] |
TRESA M P, SAMMY T. Nickel-based superalloys for advanced turbine engines:chemistry, microstructure, and properties[J]. Journal of Propulsion and Power, 2006, 22(2):361-373.
|
[5] |
詹志新, 佟阳, 李彬恺, 等. 考虑冲击缺陷的钛合金板的疲劳寿命预估[J]. 航空学报, 2016, 37(7):2200-2207. ZHAN Z X, TONG Y, LI B K, et al. Fatigue life prediction of titanium plate considering impact defect[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2200-2207(in Chinese).
|
[6] |
LIU C L. Reliability analysis for an aero engine turbine disk under low cycle fatigue condition[J]. Acta Metallurgica Sinica, 2009, 17(4):514-520.
|
[7] |
GAN L P, HUANG H Z, ZHU S P, et al. Fatigue reliability analysis of turbine disk alloy using saddle point approximation[J]. International Journal of Turbo & Jet-Engines, 2013, 30(3):217-229.
|
[8] |
冯引利, 吴长波, 郜伟强, 等. FGH96涡轮盘低循环疲劳寿命分析技术与试验[J]. 航空动力学报, 2012, 27(3):628-634. FENG Y L, WU C B, GAO W Q, et al. Analysis technology and experiment for FGH96 disc's LCF life[J]. Journal of Aerospace Power, 2012, 27(3):628-634(in Chinese).
|
[9] |
COFFIN L F. A study of the effects of cyclic thermal stresses on a ductile metal[J]. Transactions of the American Society of Mechanical Engineers, 1954, 74:931-950.
|
[10] |
MORROW J D. Fatigue design handbook[M]. 1 st ed. New York:SAE Advances in Engineering, 1968:21-29.
|
[11] |
MANSON S S, HALFORD G R. Practical implementation of the double linear damage rule and damage curve approach for treating cumulative fatigue damage[J]. International Journal of Fracture, 1981, 17:169-172.
|
[12] |
SMITH K N, WATSON P, TOPPER T H. A stress-strain function for the fatigue of metals[J]. Journal of Materials, 1970, 5:767-778.
|
[13] |
GATES N R, FATEMI A. On the consideration of normal and shear stress interaction in multiaxial fatigue damage analysis[J]. International Journal of Fatigue, 2017, 100:322-336.
|
[14] |
ZHU S P, LEI Q, WANG Q Y. Mean stress and ratcheting corrections in fatigue life prediction of metals[J]. Fatigue & Fracture of Engineering Materials & Structures, 2017, 40(9):1343-1354.
|
[15] |
丁如昌. 航空发动机涡轮盘疲劳可靠性建模和分析[D]. 成都:电子科技大学, 2019:29-30. DING R C. Study on fatigue reliability modeling and analysis of turbine disk of an aero-engine[D]. Chengdu:University of Electronic Science and Technology of China, 2019:29-30(in Chinese).
|
[16] |
吴志荣, 胡绪腾, 宋迎东. 基于最大切应变幅和修正SWT参数的多轴疲劳寿命预测模型[J]. 机械工程学报, 2013, 49(2):59-66. WU Z R, HU X T, SONG Y D. Multi-axial fatigue life prediction model based on maximum shear strain amplitude and modified SWT parameter[J]. Journal of Mechanical Engineering, 2013, 49(2):59-66(in Chinese).
|
[17] |
吕志强. 航空发动机轮盘低周疲劳寿命预测方法研究[D]. 成都:电子科技大学, 2012:35-48. LV Z Q. Research on low cycle fatigue life prediction methodology of aero-engine disc[D]. Chengdu:University of Electronic Science and Technology of China, 2012:35-48(in Chinese).
|
[18] |
LV Z Q, HUANG H Z, WANG H K, et al. Determining of the walker exponent and a modified SWT parameter model[J]. Journal of Mechanical Science and Technology, 2016, 30(3):1129-1137.
|
[19] |
WEHNER T, FATEMI A. Effects of mean stress on fatigue behavior of a hardened carbon steel[J]. International Journal of Fatigue, 1991, 13(3):241-248.
|
[20] |
MADDOX S J. The effect of mean stress on fatigue crack propagation a literature review[J]. International Journal of Fracture, 1975, 11(3):389-408.
|
[21] |
WALKER K. The effect of stress ratio during crack propagation and fatigue for 2024-T3 and 7075-T6 aluminum[J]. American Society for Testing and Materials, 1970, 462(1):1-14.
|
[22] |
周杰. 航空发动机涡轮叶片疲劳寿命及可靠性分析[D]. 成都:电子科技大学, 2019:15-18. ZHOU J. Fatigue life prediction and reliability analysis of aero-engine turbine blades[D]. Chengdu:University of Electronic Science and Technology of China, 2019:15-18(in Chinese).
|
[23] |
王延荣, 李宏新, 袁善虎, 等. 考虑应力梯度的缺口疲劳寿命预测方法[J]. 航空动力学报, 2013, 28(6):1208-1214. WANG Y R, LI H X, YUAN S H, et al. Method for notched fatigue life prediction with stress gradient[J]. Journal of Aerospace Power, 2013, 28(6):1208-1214(in Chinese).
|
[24] |
张智胜. 航空发动机涡轮盘疲劳寿命预测与动态可靠性分析[D]. 成都:电子科技大学, 2014:41-42. ZHANG Z S. Life prediction and dynamic reliability analysis of aircraft turbine disc[D]. Chengdu:University of Electronic Science and Technology of China, 2014:41-42(in Chinese).
|
[25] |
WANG Y R, WANG X C, ZHONG B, et al. Estimation of fatigue parameters in total strain life equation for powder metallurgy superalloy FGH96 and other metallic materials[J]. International Journal of Fatigue, 2019, 122:116-124.
|
[26] |
《航空发动机设计用材料数据手册》编委会. 航空发动机设计用材料数据手册(第五册)[M]. 第1版. 北京:航空工业出版社, 2014:151-286. Material Data Handbook of Aircraft Design Committee. Material data handbook of aircraft design (the fifth book)[M]. 1 st ed. Beijing:Aviation Industry Press, 2014:151-286(in Chinese).
|