[1] |
WU R H, YUE Z F, WANG M. Effect of initial γ/γ' microstructure on creep of single crystal nickel-based superalloys:A phase-field simulation incorporating dislocation dynamics[J]. Journal of Alloys and Compounds, 2019, 779:326-334.
|
[2] |
MENOU E, RAME J, DESGRANGES C, et al. Computational design of a single crystal nickel-based superalloy with improved specific creep endurance at high temperature[J]. Computational Materials Science, 2019, 170:109194.
|
[3] |
LI Y F, WANG L, ZHANG G, et al. Creep anisotropy of a 3rd generation nickel-base single crystal superalloy at 850℃[J]. Materials Science and Engineering:A, 2019, 760:26-36.
|
[4] |
QI D Q, WANG D, DU K, et al. Creep deformation of a nickel-based single crystal superalloy under high stress at 1033 K[J]. Journal of Alloys and Compounds, 2018, 735:813-820.
|
[5] |
HU Y B, ZHANG L, CAO T S, et al. The effect of thickness on the creep properties of a single-crystal nickel-based superalloy[J]. Materials Science and Engineering:A, 2018, 728:124-132.
|
[6] |
岳全召, 刘林, 杨文超, 等. 先进镍基单晶高温合金蠕变行为的研究进展[J]. 材料导报, 2019, 33(3):479-489. YUE Q Z, LIU L, YANG W C, et al. Research progress of creep behaviors in advanced Ni-based single crystal superalloys[J]. Materials Reports, 2019, 33(3):479-489(in Chinese).
|
[7] |
曹刚, 张旭辉, 徐涛, 等. 镍基单晶合金高温低周疲劳微观损伤及断裂机制[J]. 热加工工艺, 2017, 46(22):48-51. CAO G, ZHANG X H, XU T, et al. Microscopic damage and fracture mechanism of nickel-based single crystal superalloy during low cycle fatigue at elevated temperature[J]. Hot Working Technology, 2017, 46(22):48-51(in Chinese).
|
[8] |
ZHANG L, ZHAO L, ROY A, et al. Low-cycle fatigue of single crystal nickel-based superalloy-Mechanical testing and TEM characterisation[J]. Materials Science and Engineering:A, 2019, 744:538-547.
|
[9] |
LIU L, MENG J, LIU J L, et al. Effects of crystal orientations on the cyclic deformation behavior in the low cycle fatigue of a single crystal nickel-base superalloy[J]. Materials & Design, 2017, 131:441-449.
|
[10] |
LI S, PING L. Low-cycle fatigue behavior of a nickel base single crystal superalloy at high temperature[J]. Rare Metal Materials and Engineering, 2015, 44(2):288-292.
|
[11] |
MORRISSEY R J, GOLDEN P J. Fatigue strength of a single crystal in the gigacycle regime[J]. International Journal of Fatigue, 2007, 29(9-11):2079-2084.
|
[12] |
NIE B H, ZHAO Z H, LIU S, et al. Very high cycle fatigue behavior of a directionally solidified Ni-base superalloy DZ4[J]. Materials, 2018, 11(1):98.
|
[13] |
ZHAO Z H, ZHANG F L, DONG C, et al. Initiation and early-stage growth of internal fatigue cracking under very-high-cycle fatigue regime at high temperature[J]. Metallurgical and Materials Transactions A, 2020, 51(4):1575-1592.
|
[14] |
CERVELLON A, CORMIER J, MAUGET F, et al. Very high cycle fatigue of Ni-based single-crystal superalloys at high temperature[J]. Metallurgical and Materials Transactions A, 2018, 49(9):3938-3950.
|
[15] |
CERVELLON A, CORMIER J, MAUGET F, et al. VHCF life evolution after microstructure degradation of a Ni-based single crystal superalloy[J]. International Journal of Fatigue, 2017, 104:251-262.
|
[16] |
YI J Z, TORBET C J, FENG Q, et al. Ultrasonic fatigue of a single crystal Ni-base superalloy at 1000℃[J]. Materials Science and Engineering:A, 2007, 443(1-2):142-149.
|
[17] |
骆宇时, 郭会明, 赵云松, 等. 热等静压对第二代DD6单晶高温合金高温高周疲劳性能的影响[J]. 机械工程材料, 2016, 40(7):51-55, 118. LUO Y S, GUO H M, ZHAO Y S, et al. Effect of hot isostatic pressing on high-temperature high cycle fatigue properties of a second generation single crystal superalloy DD6[J]. Materials for Mechanical Engineering, 2016, 40(7):51-55, 118(in Chinese).
|
[18] |
Department of Defense Handbook. Engine structural integrity programs (ENSIP):MIL-HDBH-1783B[S]. Washington, D.C.:Department of Defense, 2002.
|
[19] |
张琴, 许巍, 范金娟, 等. 材料及构件振动疲劳研究进展[J]. 材料开发与应用, 2020, 35(1):14-22, 31. ZHANG Q, XU W, FAN J J, et al. Research progress of vibration fatigue of materials and components[J]. Development and Application of Materials, 2020, 35(1):14-22, 31(in Chinese).
|
[20] |
洪友士, 孙成奇, 刘小龙. 合金材料超高周疲劳的机理与模型综述[J]. 力学进展, 2018, 48(1):1-65. HONG Y S, SUN C Q, LIU X L. A review on mechanisms and models for very-high-cycle fatigue of metallic materials[J]. Advances in Mechanics, 2018, 48(1):1-65(in Chinese).
|
[21] |
HONG Y S, SUN C Q. The nature and the mechanism of crack initiation and early growth for very-high-cycle fatigue of metallic materials-An overview[J]. Theoretical and Applied Fracture Mechanics, 2017, 92:331-350.
|
[22] |
许罗鹏, ZHOU Min, 王清远. DZ125合金超高周疲劳微观裂纹萌生机制[J]. 工程科学与技术, 2018, 50(6):245-250. XU L P, ZHOU M, WANG Q Y. Micro-crack initiation mechanism of DZ125 Ni-based alloy during very high cycle fatigue[J]. Advanced Engineering Sciences, 2018, 50(6):245-250(in Chinese).
|
[23] |
CHU Z K, YU J J, SUN X F, et al. High cycle fatigue behavior of a directionally solidified Ni-base superalloy DZ951[J]. Materials Science and Engineering:A, 2008, 496(1-2):355-361.
|
[24] |
LIU Y, YU J J, XU Y, et al. High cycle fatigue behavior of a single crystal superalloy at elevated temperatures[J]. Materials Science and Engineering:A, 2007, 454-455:357-366.
|
[25] |
REED R C. The superalloys[M]. Cambridge:Cambridge University Press, 2006.
|
[26] |
BATHIAS C, PARIS P C. Gigacycle fatigue in mechanical practice[M]. New York:CRC Press, 2004.
|
[27] |
WRIGHT P K, JAIN M, CAMERON D. High cycle fatigue in a single crystal superalloy:Time dependence at elevated temperature[C]//Superalloys 2004(Tenth International Symposium). Warrendale:TMS, 2004:657-666.
|
[28] |
CHEN Q, KAWAGOISHI N, WANG Q Y, et al. Small crack behavior and fracture of nickel-based superalloy under ultrasonic fatigue[J]. International Journal of Fatigue, 2005, 27(10-12):1227-1232.
|
[29] |
FURUYA Y, KOBAYASHI K, HAYAKAWA M, et al. High-temperature ultrasonic fatigue testing of single-crystal superalloys[J]. Materials Letters, 2012, 69:1-3.
|
[30] |
胡远培, 洪友士. 加载频率对高强钢超高周疲劳行为的影响[C]//第三届中国超高周疲劳学术会议论文集. 成都:中国科学院力学研究所, 2016:34. HU Y P, HONG Y S. Effect of loading frequency on very high cycle fatigue behavior of high strength steel[C]//Proceedings of the 3rd China Very High Cycle Fatigue Academic Conference. Chengdu:Institute of Mechanics, Chinese Academy of Sciences, 2016:34(in Chinese).
|
[31] |
SCHNEIDER N, BÖDECKER J, BERGER C, et al. Frequency effect and influence of testing technique on the fatigue behaviour of quenched and tempered steel and aluminium alloy[J]. International Journal of Fatigue, 2016, 93:224-231.
|
[32] |
GUENNEC B, UENO A, SAKAI T, et al. Effect of the loading frequency on fatigue properties of JIS S15C low carbon steel and some discussions based on micro-plasticity behavior[J]. International Journal of Fatigue, 2014, 66:29-38.
|
[33] |
BORTOLUCI ORMASTRONI L M, MATAVELI SUAVE L, CERVELLON A, et al. LCF, HCF and VHCF life sensitivity to solution heat treatment of a third-generation Ni-based single crystal superalloy[J]. International Journal of Fatigue, 2020, 130:105247.
|
[34] |
RANC N, WAGNER D, PARIS P C. Study of thermal effects associated with crack propagation during very high cycle fatigue tests[J]. Acta Materialia, 2008, 56(15):4012-4021.
|
[35] |
CERVELLON A, HEMERY S, KURNSTEINER P, et al. Crack initiation mechanisms during very high cycle fatigue of Ni-based single crystal superalloys at high temperature[J]. Acta Materialia, 2020, 188:131-144.
|
[36] |
CHAI G C. Analysis of microdamage in a nickel-base alloy during very high cycle fatigue[J]. Fatigue & Fracture of Engineering Materials & Structures, 2016, 39(6):712-721.
|
[37] |
CHAI G C, ZHOU N, CIUREA S, et al. Local plasticity exhaustion in a very high cycle fatigue regime[J]. Scripta Materialia, 2012, 66(10):769-772.
|
[38] |
燕怒, 韩晓琪, 余泳华, 等. GH4169镍基高温合金的超高周疲劳性能[J]. 机械工程材料, 2016, 40(4):9-12. YAN N, HAN X Q, YU Y H, et al. Very high cycle fatigue properties of GH4169 Ni-based superalloy[J]. Materials for Mechanical Engineering, 2016, 40(4):9-12(in Chinese).
|
[39] |
STINVILLE J C, LENTHE W C, MIAO J, et al. A combined grain scale elastic-plastic criterion for identification of fatigue crack initiation sites in a twin containing polycrystalline nickel-base superalloy[J]. Acta Materialia, 2016, 103:461-473.
|
[40] |
CASTELLUCCIO G M, MUSINSKI W D, MCDOWELL D L. Computational micromechanics of fatigue of microstructures in the HCF-VHCF regimes[J]. International Journal of Fatigue, 2016, 93:387-396.
|
[41] |
FATEMI A, SOCIE D F. A critical plane approach to multiaxial fatigue damage including out-of-phase loading[J]. Fatigue & Fracture of Engineering Materials and Structures, 1988, 11(3):149-165.
|
[42] |
STEUER S, VILLECHAISE P, POLLOCK T M, et al. Benefits of high gradient solidification for creep and low cycle fatigue of AM1 single crystal superalloy[J]. Materials Science and Engineering:A, 2015, 645:109-115.
|