ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2023, Vol. 44 ›› Issue (10): 427300-427300.doi: 10.7527/S1000-6893.2022.27300
• Material Engineering and Mechanical Manufacturing • Previous Articles Next Articles
Xiurui WANG1, Kaishang LI1, Hanghang GU1, Yong ZHANG1, Tiwen LU1, Runzi WANG2, Xiancheng ZHANG1()
Received:
2022-04-19
Revised:
2022-05-05
Accepted:
2022-06-20
Online:
2023-05-25
Published:
2022-06-27
Contact:
Xiancheng ZHANG
E-mail:xczhang@ecust.edu.cn
Supported by:
CLC Number:
Xiurui WANG, Kaishang LI, Hanghang GU, Yong ZHANG, Tiwen LU, Runzi WANG, Xiancheng ZHANG. A unified criterion for high⁃low cycle fatigue life prediction based on crystal plasticity theory[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(10): 427300-427300.
Table 3
Adopted Wcyc, Eeff⁃cyc and fatigue life Nf for calculating Wcrit and Ecrit of nickel⁃based alloy for various amplitudes
应变幅(Δεt/2)/% | 每周次累积能量耗散Wcyc/(MJ·m-3) | 每周次有效能Eeff-cyc/(MJ·m-3) | Nf/周次 |
---|---|---|---|
0.35 | 6.44×10-17 | 0.053 | 442 600 |
0.40 | 1.19×10-8 | 0.212 | 168 270 |
0.45 | 0.568 | 1.058 | 81 175 |
0.50 | 9.199 | 9.992 | 10 572 |
0.60 | 27.167 | 28.416 | 4 184 |
0.80 | 67.174 | 69.086 | 2 007 |
1.00 | 118.553 | 120.895 | 1 110 |
1.20 | 210.934 | 213.507 | 649 |
1.60 | 263.312 | 266.274 | 385 |
2.00 | 478.674 | 481.743 | 269 |
1 | AKCA E, GÜRSEL A. A review on superalloys and IN718 nickel-based INCONEL superalloy[J]. Periodicals of Engineering and Natural Sciences (PEN), 2015, 3(1): 47. |
2 | TOKAJI K, TAKAFUJI S, OHYA K, et al. Fatigue behaviour of beta Ti-22V-4Al alloy subjected to surface-microstructural modification[J]. Journal of Materials Science, 2003, 38(6): 1153-1159. |
3 | 轩福贞, 朱明亮, 王国彪. 结构疲劳百年研究的回顾与展望[J]. 机械工程学报, 2021, 57(6): 26-51. |
XUAN F Z, ZHU M L, WANG G B. Retrospect and prospect on century-long research of structural fatigue[J]. Journal of Mechanical Engineering, 2021, 57(6): 26-51 (in Chinese). | |
4 | 王润梓, 廖鼎, 张显程, 等. 高温结构蠕变疲劳寿命设计方法: 从材料到结构[J]. 机械工程学报, 2021, 57(16): 66-86, 105. |
WANG R Z, LIAO D, ZHANG X C, et al. Creep-fatigue life design methods in high-temperature structures: From materials to components[J]. Journal of Mechanical Engineering, 2021, 57(16): 66-86, 105 (in Chinese). | |
5 | SUN L, BAO X G, GUO S J, et al. The creep-fatigue behavior of a nickel-based superalloy: Experiments study and cyclic plastic analysis[J]. International Journal of Fatigue, 2021, 147: 106187. |
6 | BASQUIN O H. The exponential law of endurance tests[J]. Proceeding of the American Society for Testing and Materials, 1910, 10: 625-630. |
7 | MORROW J. Cyclic plastic strain energy and fatigue of metals[C]∥ ASTM STP. West Conshohocken: ASTM, 1965: 45-87. |
8 | GOODMAN J. Mechanics applied to engineering[M]. London: Longmans, Green and Co., 1930. |
9 | MANSON S. Behavior of materials under conditions of thermal stress: NACA TN 2933[R]. Washington, D.C.: NACA, 1953. |
10 | COFFIN L. A study of the effects of cyclic thermal stresses on a ductile metal[J]. Transactions of the ASME, 1954, 76: 931-940. |
11 | YANG S, YANG L, WANG Y R. Determining the fatigue parameters in total strain life equation of a material based on monotonic tensile mechanical properties[J]. Engineering Fracture Mechanics, 2020, 226: 106866. |
12 | MANONUKUL A, DUNNE F P E. High- and low-cycle fatigue crack initiation using polycrystal plasticity[J]. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 2004, 460(2047): 1881-1903. |
13 | YUAN G J, ZHANG X C, CHEN B, et al. Low-cycle fatigue life prediction of a polycrystalline nickel-base superalloy using crystal plasticity modelling approach[J]. Journal of Materials Science & Technology, 2020, 38: 28-38. |
14 | CRUZADO A, LUCARINI S, LLORCA J, et al. Microstructure-based fatigue life model of metallic alloys with bilinear Coffin-Manson behavior[J]. International Journal of Fatigue, 2018, 107: 40-48. |
15 | KORSUNSKY A M, DINI D, DUNNE F P E, et al. Comparative assessment of dissipated energy and other fatigue criteria[J]. International Journal of Fatigue, 2007, 29(9-11): 1990-1995. |
16 | ZHANG K S, JU J W, LI Z H, et al. Micromechanics based fatigue life prediction of a polycrystalline metal applying crystal plasticity[J]. Mechanics of Materials, 2015, 85: 16-37. |
17 | SANGID M D, MAIER H J, SEHITOGLU H. A physically based fatigue model for prediction of crack initiation from persistent slip bands in polycrystals[J]. Acta Materialia, 2011, 59(1): 328-341. |
18 | SWEENEY C A, O’BRIEN B, DUNNE F P E, et al. Strain-gradient modelling of grain size effects on fatigue of CoCr alloy[J]. Acta Materialia, 2014, 78: 341-353. |
19 | YUAN G J, WANG R Z, GONG C Y, et al. Investigations of micro-Notch effect on small fatigue crack initiation behaviour in nickel-based alloy GH4169: Experiments and simulations[J]. International Journal of Fatigue, 2020, 136: 105578. |
20 | YUAN G J, WANG R Z, ZHU W B, et al. Experimental and simulated investigations of low cycle fatigue behavior in a nickel-based superalloy with different volume fractions of δ phase[J]. International Journal of Fatigue, 2021, 153: 106411. |
21 | JIANG Y Y, OTT W, BAUM C, et al. Fatigue life predictions by integrating EVICD fatigue damage model and an advanced cyclic plasticity theory[J]. International Journal of Plasticity, 2009, 25(5): 780-801. |
22 | ZHANG X C, LI H C, ZENG X, et al. Fatigue behavior and bilinear Coffin-Manson plots of Ni-based GH4169 alloy with different volume fractions of δ phase[J]. Materials Science and Engineering: A, 2017, 682: 12-22. |
23 | PRAVEEN K, SASTRY G S, SINGH V. Room temperature LCF behaviour of superalloy IN 718[J]. Transactions of the Indian Institute of Metals, 2004, 57(6): 623-630. |
24 | LIU L L, HU D Y, LI D, et al. Effect of grain size on low cycle fatigue life in compressor disc superalloy GH4169 at 600 ℃[J]. Procedia Structural Integrity, 2017, 7: 174-181. |
25 | KUMAR S, CHATTOPADHYAY K, SINGH V, et al. Low cycle fatigue life of the alloy IN718 enhanced through surface nanostructuring[J]. Materials Characterization, 2020, 159: 110066. |
26 | PRAVEEN K V U, SINGH V. Effect of cold rolling on the Coffin-Manson relationship in low-cycle fatigue of superalloy IN718[J]. Metallurgical and Materials Transactions A, 2008, 39(1): 79-86. |
27 | SINGH V. Effects of prior cold working on low cycle fatigue behavior of stainless steels, titanium alloy timetal 834 and superalloy IN 718: A review[J]. Transactions of the Indian Institute of Metals, 2010, 63(2): 167-172. |
28 | PRAVEEN K V U, SINGH V. Effect of heat treatment on Coffin-Manson relationship in LCF of superalloy IN718[J]. Materials Science and Engineering: A, 2008, 485(1-2): 352-358. |
29 | ETRIS S F, FIORINI Y R, LIEB K C, et al. Strain fatigue and tensile behavior of Inconel® 718 from room temperature to 650℃[J]. Journal of Testing and Evaluation, 1974, 2(4): 249. |
30 | 潘磊. 考虑车削表面状态的GH4169镍基高温合金疲劳寿命模型研究[D]. 南京: 南京航空航天大学, 2020. |
PAN L. Research on fatigue life model of GH4169 nickel-based superalloy considering turning surface integrity[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020 (in Chinese). | |
31 | 燕怒, 韩晓琪, 余泳华, 等. GH4169镍基高温合金的超高周疲劳性能[J]. 机械工程材料, 2016, 40(4): 9-12. |
YAN N, HAN X Q, YU Y H, et al. Very high cycle fatigue properties of GH4169 Ni-based superalloy[J]. Materials for Mechanical Engineering, 2016, 40(4): 9-12 (in Chinese). | |
32 | ZHAO X, ZHAO J J, LIU Y J. Fatigue behavior of GH4169 alloy up to very high cycles[J]. Advanced Materials Research, 2012, 535-537: 928-931. |
33 | 陈永红. Inconel718镍基高温合金的低温高周疲劳性能[J]. 上海钢研, 2005(2): 44-47. |
CHEN Y H. Low temperature and high cycle fatigue properties of Inconel718 nickel-base superalloy[J]. Shonghai Steel & Iron Research, 2005(2): 44-47 (in Chinese). | |
34 | MA X F, DUAN Z, SHI H J, et al. Fatigue and fracture behavior of nickel-based superalloy Inconel 718 up to the very high cycle regime[J]. Journal of Zhejiang University-Science A, 2010, 11(10): 727-737. |
35 | ZHANG T L, YUAN H, YANG S. Microstructural characterization and fatigue performance of the recast material induced by laser manufacturing of a nickel-based superalloy[J]. Journal of Materials Processing Technology, 2021, 293: 117087. |
36 | ZHONG L Q, HU H, LIANG Y L, et al. High cycle fatigue performance of inconel 718 alloys with different strengths at room temperature[J]. Metals, 2018, 9(1): 13. |
37 | NAGATA N, SATO S, KATADA Y. Low cycle fatigue behavior of pressure vessel steels in high temperature pressurized water[J]. ISIJ International, 1991, 31(1): 106-114. |
38 | HILL R, RICE J R. Constitutive analysis of elastic-plastic crystals at arbitrary strain[J]. Journal of the Mechanics and Physics of Solids, 1972, 20(6): 401-413. |
39 | ASARO R J, RICE J R. Strain localization in ductile single crystals[J]. Journal of the Mechanics and Physics of Solids, 1977, 25(5): 309-338. |
40 | PEIRCE D, ASARO R J, NEEDLEMAN A. Material rate dependence and localized deformation in crystalline solids[J]. Acta Metallurgica, 1983, 31(12): 1951-1976. |
41 | BUSSO E. Cyclic deformation of monocrystalline nickel aluminide and high temperature coatings[D]. Cambridge: Massachusetts Institute of Technology, 1990. |
42 | LI D F, GOLDEN B J, O’DOWD N P. Multiscale modelling of mechanical response in a martensitic steel: A micromechanical and length-scale-dependent framework for precipitate hardening[J]. Acta Materialia, 2014, 80: 445-456. |
43 | FREDERICK C O, ARMSTRONG P J. A mathematical representation of the multiaxial Bauschinger effect[J]. Materials at High Temperatures, 2007, 24(1): 1-26. |
44 | SKELTON R P, VILHELMSEN T, WEBSTER G A. Energy criteria and cumulative damage during fatigue crack growth[J]. International Journal of Fatigue, 1998, 20(9): 641-649. |
45 | SWEENEY C A, O’BRIEN B, DUNNE F P E, et al. Micro-scale testing and micromechanical modelling for high cycle fatigue of CoCr stent material[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 46: 244-260. |
46 | SUN X, CHOI K S, LIU W N, et al. Predicting failure modes and ductility of dual phase steels using plastic strain localization[J]. International Journal of Plasticity, 2009, 25(10): 1888-1909. |
47 | SAUZAY M. Cubic elasticity and stress distribution at the free surface of polycrystals[J]. Acta Materialia, 2007, 55(4): 1193-1202. |
48 | LU Y S, ZHU Z W, LI D Y, et al. Constitutive model of 42CrMo steel under a wide range of strain rates based on crystal plasticity theory[J]. Materials Science and Engineering: A, 2017, 679: 215-222. |
49 | LIN B, ZHAO L G, TONG J, et al. Crystal plasticity modeling of cyclic deformation for a polycrystalline nickel-based superalloy at high temperature[J]. Materials Science and Engineering: A, 2010, 527(15): 3581-3587. |
50 | BUSSO E P, MEISSONNIER F T, O’DOWD N P. Gradient-dependent deformation of two-phase single crystals[J]. Journal of the Mechanics and Physics of Solids, 2000, 48(11): 2333-2361. |
51 | YUAN G J, CHEN H, LI D F, et al. The effect of δ phase on the microplasticity evolution of a heat-treated nickel base superalloy[J]. Mechanics of Materials, 2020, 148: 103520. |
[1] | Tongzhou GAO, Xiaofan HE, Xiaolei WANG, Ziguang LI, Zhentao ZHU, Zhixin ZHAN. Fatigue life prediction of 2014-T6 aluminum alloy based on CDM theory and SVM model [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 228952-228952. |
[2] | Fangyi SHENG, Guolin YANG, Fantong MENG, Zhigang DONG, Renke KANG. Finite element simulation analysis in helical milling of countersunk hole [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 428690-428690. |
[3] | Siji WANG, Yuwei ZHANG, Kaiming HUANG, Biao LYU, Haifeng ZHAO, Hu WANG, Mingfu LIAO. An optimization method for helicopter power turbine rotor system based on improved particle swarm optimization algorithm [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 228608-228608. |
[4] | Yongjie HUANG, Zhangsong NI, Jie PAN. Simulation of electro-impulse de-icing considering ice fracture and interface debonding [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729306-729306. |
[5] | Zhenyu WANG, Jizhen WANG, Jingyi YANG, Pengyuan HE, Chenghao PAN, Lingbo ZHOU, Cheng HE, Huan HE. Dynamics model updating of structures at high temperature based on novel particle swarm optimization algorithm [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(7): 226559-226559. |
[6] | Liping LIU, Yuyang QI, Yueguo LIN, Rui BAO, Jianxin XU, Zhenyu FENG, Guanghui QING. Tensile failure of carbon fiber composite material bonded-rivet hybrid repaired structure [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(24): 428676-428676. |
[7] | Zhenyu MA, Xiaolong DENG, Xixiang YANG, Bingjie ZHU. Thermal⁃structure coupling characteristics of flexible envelopes for stratospheric airships at float conditions [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(19): 228337-228337. |
[8] | Tianchun ZOU, Yuezhang JU, Yuxi GUAN, Zegang LI, Hongcheng CHEN. Effect of stacking sequence on fatigue behavior of CFRP⁃Al joint [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(18): 428264-428264. |
[9] | Jiangbo CHEN, Kai ZENG, Baoying XING, Hongshen ZHANG, Yanfang DING, Xiaocong HE. Aluminum alloy clinch-bonding with hot melt adhesive film and joint failure analysis [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(14): 428029-428029. |
[10] | Jiaxin YANG, Shengjin TANG, Liang LI, Xiaoyan SUN, Shuai QI, Xiaosheng SI. Remaining useful life prediction of implicit nonlinear Wiener degradation process based on multi-source information [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(12): 227662-227662. |
[11] | Laixiao LU, Changguan XU, Jianhua LIU, Meizhen QIN, Yingbo LYU, Yuqin YAN. Influence of initial stress state on bilateral rolling process of thin⁃walled part [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(10): 427415-427415. |
[12] | WU Zhiyuan, YAN Han, WU Linchao, MA Hui, QU Yegao, ZHANG Wenming. Vibration characteristics of rotating cracked-blade-flexible-disk coupling system [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 625442-625442. |
[13] | ZHANG Shengfei, LI Tianmei, HU Changhua, DU Dangbo, SI Xiaosheng. Missing data generation method and its application in remaining useful life prediction based on deep convolutional generative adversarial network [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(8): 225708-225708. |
[14] | CAO Yi, MENG Gang, JU Yongjian, XU Weisheng. Large-stroke compliant micro-positioning stage considering parasitic rotation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(7): 425498-425498. |
[15] | MU Hanxiao, ZHENG Jianfei, HU Changhua, ZHAO Ruixing, DONG Qing. Remaining useful life prediction of multivariate degradation equipment based on CDBN and BiLSTM [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(7): 325403-325403. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341