Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (7): 228952-228952.doi: 10.7527/S1000-6893.2023.28952
• Solid Mechanics and Vehicle Conceptual Design • Previous Articles Next Articles
Tongzhou GAO1, Xiaofan HE1, Xiaolei WANG2, Ziguang LI2, Zhentao ZHU2, Zhixin ZHAN1()
Received:
2023-05-03
Revised:
2023-05-22
Accepted:
2023-06-07
Online:
2024-04-15
Published:
2023-06-09
Contact:
Zhixin ZHAN
E-mail:zzxupc@163.com
Supported by:
CLC Number:
Tongzhou GAO, Xiaofan HE, Xiaolei WANG, Ziguang LI, Zhentao ZHU, Zhixin ZHAN. Fatigue life prediction of 2014-T6 aluminum alloy based on CDM theory and SVM model[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 228952-228952.
Table 5
Calculation results of fatigue life based on finite element numerical method of damage mechanics
数据编号 | Kt | R | 试验寿命/循环 | 预测寿命/ 循环 | 相对 误差/% | |
---|---|---|---|---|---|---|
1 | 1 | -1 | 289.59 | 33 380 | 39 839 | 19.35 |
2 | 1 | -1 | 248.22 | 102 324 | 101 384 | -0.92 |
3 | 1 | -1 | 220.64 | 202 313 | 206 979 | 2.31 |
4 | 1 | -1 | 193.06 | 368 480 | 464 863 | 26.16 |
5 | 1 | -1 | 179.27 | 432 596 | 728 360 | 68.37 |
6 | 1 | -1 | 165.48 | 4 039 200 | 1 183 001 | -70.71 |
7 | 1 | 0 | 455.07 | 15 173 | 13 794 | -9.09 |
8 | 1 | 0 | 413.70 | 46 834 | 32 448 | -30.72 |
9 | 1 | 0 | 344.75 | 151 729 | 151 555 | -0.11 |
10 | 1 | 0 | 296.49 | 229 517 | 504 086 | 119.63 |
11 | 1 | 0 | 275.80 | 915 495 | 880 320 | -3.84 |
12 | 1 | 0.06 | 413.70 | 22 918 | 40 019 | 74.62 |
13 | 1 | 0.06 | 379.20 | 56 294 | 86 387 | 53.46 |
14 | 1 | 0.06 | 344.80 | 114 376 | 193 829 | 69.47 |
15 | 1 | 0.06 | 324.10 | 172 985 | 322 954 | 86.69 |
16 | 1 | 0.06 | 296.50 | 2 633 260 | 660 338 | -74.92 |
17 | 1 | 0.06 | 289.60 | 732 477 | 795 226 | 8.57 |
18 | 1 | 0.06 | 275.80 | 2 790 979 | 1 164 390 | -58.28 |
19 | 1 | 0.06 | 255.10 | 6 238 830 | 2 119 015 | -66.04 |
20 | 1.6 | -1 | 275.80 | 13 501 | 40 503 | 200.00 |
21 | 1.6 | -1 | 241.33 | 25 132 | 72 381 | 188.00 |
22 | 1.6 | -1 | 227.54 | 38 671 | 98 999 | 156.00 |
23 | 1.6 | -1 | 199.96 | 193 303 | 187 504 | -3.00 |
24 | 1.6 | -1 | 186.17 | 183 812 | 270 204 | 47.00 |
25 | 1.6 | -1 | 172.38 | 512 936 | 435 996 | -15.00 |
26 | 1.6 | -1 | 144.80 | 3 022 820 | 1 239 356 | -59.00 |
27 | 1.6 | -1 | 137.90 | 2 532 060 | 1 595 198 | -37.00 |
28 | 1.6 | -0.4 | 399.91 | 6 540 | 20 668 | 216.00 |
29 | 1.6 | -0.4 | 344.75 | 23 238 | 46 475 | 100.00 |
30 | 1.6 | -0.4 | 324.07 | 42 166 | 84 331 | 100.00 |
31 | 1.6 | -0.4 | 275.80 | 116 271 | 110 457 | -5.00 |
32 | 1.6 | -0.4 | 255.12 | 132 031 | 165 039 | 25.00 |
33 | 1.6 | -0.4 | 220.64 | 188 386 | 201 573 | 7.00 |
34 | 1.6 | -0.4 | 206.85 | 402 926 | 568 126 | 41.00 |
35 | 1.6 | -0.4 | 179.27 | 3 137 470 | 1 474 611 | -53.00 |
36 | 1.6 | 0.06 | 482.65 | 7 894 | 15 787 | 100.00 |
37 | 1.6 | 0.06 | 427.49 | 20 178 | 33 698 | 67.00 |
38 | 1.6 | 0.06 | 358.54 | 60 829 | 97 934 | 61.00 |
39 | 1.6 | 0.06 | 275.80 | 573 500 | 470 270 | -18.00 |
40 | 1.6 | 0.06 | 255.12 | 1 673 163 | 769 655 | -54.00 |
41 | 1.6 | 0.46 | 379.23 | 178 425 | 692 289 | 288.00 |
42 | 1.6 | 0.46 | 358.54 | 523 851 | 969 124 | 85.00 |
43 | 1.6 | 0.46 | 330.96 | 987 435 | 1 678 640 | 70.00 |
1 | ZHANG X S, MA Y E, YANG M, et al. A review of in-plane biaxial fatigue behavior of metallic materials[J]. Theoretical and Applied Fracture Mechanics, 2023, 123: 103726. |
2 | WU K L, LI B, GUO J J. Fatigue crack growth and fracture of internal fixation materials in environments-a review[J]. Materials, 2021, 14(1): 176. |
3 | MA Y F, GUO Z Z, WANG L, et al. Probabilistic life prediction for reinforced concrete structures subjected to seasonal corrosion-fatigue damage[J]. Journal of Structural Engineering, 2020, 146(7): 04020117. |
4 | 孙侠生, 苏少普, 孙汉斌, 等. 国外航空疲劳研究现状及展望[J]. 航空学报, 2021, 42(5): 524791. |
SUN X S, SU S P, SUN H B, et al. Current status and prospect of overseas research on aeronautical fatigue[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(5): 524791 (in Chinese). | |
5 | GREITEMEIER D, DALLE DONNE C, SYASSEN F, et al. Effect of surface roughness on fatigue performance of additive manufactured Ti–6Al–4V[J]. Materials Science and Technology, 2016, 32(7): 629-634. |
6 | WAN H Y, CHEN G F, LI C P, et al. Data-driven evaluation of fatigue performance of additive manufactured parts using miniature specimens[J]. Journal of Materials Science & Technology, 2019, 35(6): 1137-1146. |
7 | YE W L, ZHU S P, NIU X P, et al. Fatigue life prediction of notched components under size effect using stress gradient-based approach[J]. International Journal of Fracture, 2022, 234(1): 249-261. |
8 | JIANG L K, LIU W C, WU G H, et al. Effect of chemical composition on the microstructure, tensile properties and fatigue behavior of sand-cast Mg-Gd-Y-Zr alloy[J]. Materials Science and Engineering: A, 2014, 612: 293-301. |
9 | NADOT Y. Fatigue from defect: Influence of size, type, position, morphology and loading[J]. International Journal of Fatigue, 2022, 154: 106531. |
10 | XIAO G J, CHEN B Q, LI S C, et al. Fatigue life analysis of aero-engine blades for abrasive belt grinding considering residual stress[J]. Engineering Failure Analysis, 2022, 131: 105846. |
11 | ZHAO B F, SONG J X, XIE L Y, et al. Surface roughness effect on fatigue strength of aluminum alloy using revised stress field intensity approach[J]. Scientific Reports, 2021, 11: 19279. |
12 | ZHU S P, AI Y, LIAO D, et al. Recent advances on size effect in metal fatigue under defects: A review[J]. International Journal of Fracture, 2022, 234(1-2): 21-43. |
13 | ZHANG W J, HU Y Y, MA X F, et al. Very-high-cycle fatigue behavior of AlSi10Mg manufactured by selected laser melting: Crystal plasticity modeling[J]. International Journal of Fatigue, 2021, 145: 106109. |
14 | PENG X, WU S C, QIAN W J, et al. The potency of defects on fatigue of additively manufactured metals[J]. International Journal of Mechanical Sciences, 2022, 221: 107185. |
15 | WU Z K, WU S C, BAO J G, et al. The effect of defect population on the anisotropic fatigue resistance of AlSi10Mg alloy fabricated by laser powder bed fusion[J]. International Journal of Fatigue, 2021, 151: 106317. |
16 | QIAN W J, WU S C, WU Z K, et al. X-ray imaging of fatigue crack growth from multiple defects in additively manufactured AlSi10Mg alloy[J]. International Journal of Fatigue, 2022, 155: 106616. |
17 | CHIOCCA A, FRENDO F, AIELLO F, et al. Influence of residual stresses on the fatigue life of welded joints: Numerical simulation and experimental tests[J]. International Journal of Fatigue, 2022, 162: 106901. |
18 | BASQUIN O. The exponential law of endurance tests[J]. American Society for Testing and Materials Proceedings,1910,10: 625-630. |
19 | COFFN L F. A study of the effects of cyclic thermal stresses on aductile metal[J]. Transactions of the ASME, 1954;76:931-950. |
20 | MANSON S S. Behavior of materials under conditions of thermal stress[R].Washington,D.C.: NACA,1953. |
21 | MA M Z, LIU X T, YU X G, et al. Fatigue life prediction for notched specimen considering modified critical plane method[J]. Fatigue & Fracture of Engineering Materials & Structures, 2023, 46(3): 1031-1044. |
22 | OU C Y, VOOTHALURU R, LIU C R. Fatigue crack initiation of metals fabricated by additive manufacturing—A crystal plasticity energy-based approach to IN718 life prediction[J]. Crystals, 2020, 10(10): 905. |
23 | GOLAHMAR A, NIORDSON C F, MARTÍNEZ-PAÑEDA E. A phase field model for high-cycle fatigue: Total-life analysis[J]. International Journal of Fatigue, 2023, 170: 107558. |
24 | SHERIDAN L, GOCKEL J E, SCOTT-EMUAKPOR O E. Stress-defect-life interactions of fatigued additively manufactured alloy 718[J]. International Journal of Fatigue, 2021, 143: 106033. |
25 | 于宜冰,贺自强,贺小帆, 等. 基于损伤力学的轴承钢旋弯疲劳寿命预测[J/OL].北京航空航天大学学报:1-14[2023-04-24].DOI:10.13700/j.bh.1001-5965.2022.0639 . |
YU Y B, HE Z Q, HE X F, et al. Rotating bending fatigue life prediction of bearing steel based on damage mechanics[J/OL]. Journal of Beijing University of Aeronautics and Astronautic:1-14[2023-04-24].DOI:10.13700/j.bh.1001-5965.2022.0639 (in Chinese). | |
26 | GAO T Z, TONG Y, ZHAN Z X, et al. Development of a non-local approach for life prediction of notched specimen considering stress/strain gradient and elastic-plastic fatigue damage[J]. International Journal of Damage Mechanics, 2022, 31(7): 1057-1081. |
27 | 梅威威, 胡伟平, 高同州, 等. 考虑孔洞影响的铸造镁合金ZM6疲劳寿命预估方法[J]. 固体力学学报, 2022, 43(5): 585-602. |
MEI W W, HU W P, GAO T Z, et al. Study on fatigue life prediction method for casting magnesium alloy ZM6 considering the effect of internal pores[J]. Chinese Journal of Solid Mechanics, 2022, 43(5): 585-602 (in Chinese). | |
28 | ZHAN Z X, HU W P, MENG Q C. Data-driven fatigue life prediction in additive manufactured titanium alloy: A damage mechanics based machine learning framework[J]. Engineering Fracture Mechanics, 2021, 252: 107850. |
29 | MURAKAMI S. Continuum damage mechanics: A continuum mechanics approach to the analysis of damage and fracture[M]. Berlin: Springer, 2012. |
30 | XIAO Y C, LI S, GAO Z. A continuum damage mechanics model for high cycle fatigue[J]. International Journal of Fatigue, 1998, 20(7): 503-508. |
31 | U.S. Department of Defense. Military handbook: Metallic materials and elements for aerospace vehicle structures[R]. Washington, D.C.: U.S. Department of Defense, 1990. |
32 | LAZAN B, BLATHERWICK A A. Fatigue properties of aluminum alloys at various direct-stress ratios. part 1. Rolled alloys [R]. Minneapolis :Minnesota Institute of Technologies, 1952. |
[1] | Fuze ZHANG. Determination of the calendar life of the whole aircraft and the relevant issues [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(3): 229863-229863. |
[2] | Yuefeng YING, Qihao CHEN, Weidong WANG, Xinyu MAO. Effect of ultrasonic vibration of welding wire on weld formation and pore in gas metal arc welding of aluminum alloy [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(2): 428711-428711. |
[3] | Lun TANG, Shengfu YU, Bo ZHENG, Yusheng SHI, Ying CHEN. Development and application of in⁃situ Al2O3 aluminum alloy powder core wire for cylindrical lattice [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(9): 626864-626864. |
[4] | Zhongqin LIN, Zhongqi YU, Donghua DAI, Xiaoguang FAN, Shengfu YU, Dongdong GU, Shuhui LI, Yusheng SHI. Development and prospect of metal spinning: Additive hybrid manufacturing technology for complex thin⁃walled component with high ribs [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(9): 627493-627493. |
[5] | Shijie JIN, Zhicheng WANG, Xin TIAN, Xu SUN, Li LIN. TOFD detection of bottom defects in aluminum alloy plate by half-skip mode wave [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(4): 426674-426674. |
[6] | Xiangfan NIE, Yang LI, Yazhou WANG, Quanhong WAN, Weifeng HE. Research progress and prospect of laser shock peening technology in aircraft structure [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(24): 28595-028595. |
[7] | Mengqi GU, Jiacai ZHU, Wanlin GUO, Song XUE. Prospects for fatigue durability and reliability of reusable launch vehicle structures [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 628299-628299. |
[8] | Miaodong ZHAO, Dianyin HU, Jianxing MAO, Haihe SUN, Shiyong QIN, Yuanxing GU, Rongqiao WANG, Tengyue TIAN, Lin YAN, Zhixing XIAO. Simulating specimen for low cycle fatigue of aero-engine disc: Design and experiment [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(18): 228320-228320. |
[9] | Pan HE, Chao LU, Wenze SHI, Ying ZHU, Guo CHEN, Liping ZHAO. Comparation of reception performance of EMATs in laser ultrasonic surface detection of aluminum alloys [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(16): 428085-428085. |
[10] | Zhiqiang ZHANG, Qingze GOU, Xuecheng LU, Hao WANG, Yiran CAO, Zhiyong GUO. Droplet transfer behavior of high strength aluminum alloy CMT+P arc additive manufacturing [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(13): 427881-427881. |
[11] | Jiahui HE, Zhijun CHENG, Bo GUO. Telemetry anomaly detection method based on joint dictionary learning and OCSVM [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(13): 327931-327931. |
[12] | Jiaxin YANG, Shengjin TANG, Liang LI, Xiaoyan SUN, Shuai QI, Xiaosheng SI. Remaining useful life prediction of implicit nonlinear Wiener degradation process based on multi-source information [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(12): 227662-227662. |
[13] | Tiangang ZHANG, Jiahao HUANG, Xiaoyun HOU, Zhiqiang ZHANG. Mechanism for composite paint layer on aluminum alloy surface cleaned by laser [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(11): 427656-427656. |
[14] | Xiurui WANG, Kaishang LI, Hanghang GU, Yong ZHANG, Tiwen LU, Runzi WANG, Xiancheng ZHANG. A unified criterion for high⁃low cycle fatigue life prediction based on crystal plasticity theory [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(10): 427300-427300. |
[15] | Dahua DU, Bin LI. Key structural dynamic design technologies in liquid rocket engines: Review [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(10): 27554-027554. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341