[1] 李永池. 张量初步和近代连续介质力学概论[M]. 合肥:中国科学技术大学出版社, 2012. LI Y C. Introduction to tensor analysis and modern continuum mechanics[M]. Hefei:University of Science and Technology of China Press, 2012(in Chinese). [2] CHABOCHE J L, KANOUTÉ P, AZZOUZ F. Cyclic inelastic constitutive equations and their impact on the fatigue life predictions[J]. International Journal of Plasticity, 2012, 35:44-66. [3] 周柏卓, 张晓霞, 罗焰明. 正交各向异性材料粘塑性统一本构模型[J]. 推进技术, 1998, 19(1):89-93. ZHOU B Z, ZHANG X X, LUO Y M. A unified viscoplastic constitutive model of orthogonal anisotropic material[J]. Journal of Propulsion Technology, 1998, 19(1):89-93(in Chinese). [4] BODNER S R, PARTOM Y. Constitutive equations for elastic-viscoplastic strain-hardening materials[J]. Journal of Applied Mechanics, 1975, 42(2):385-389. [5] MILLER A. An inelastic constitutive model for monotonic, cyclic, and creep deformation:part II-Application to type 304 stainless steel[J]. Journal of Engineering Materials and Technology, 1976, 98(2):106-112. [6] ROWLEY M A, THORNTON E A. Constitutive modeling of the visco-plastic response of hastelloy-X and aluminum alloy 8009[J]. Journal of Engineering Materials and Technology, 1996, 118(1):19-27. [7] SHI D Q, YANG X G, WANG Y R. Constitutive modeling of hardening and creep response of a nickel-based superalloy udimet 720Li[J]. Chinese Journal of Aeronautics, 2003, 16(3):187-192. [8] SHI D Q, YANG X G, WANG Y R. Improvement on the modeling of rate-dependent plasticity and cyclic hardening by bodner-partom model[J]. Chinese Journal of Aeronautics, 2005, 18(1):83-89. [9] BODNER S R, KALISZKY S. Unified plasticity for engineering applications. mathematical concepts and methods in science and engineering, vol 47[J]. Applied Mechanics Reviews, 2002, 55(6):B111. [10] VENKATESH V, RACK H J. Elevated temperature hardening of INCONEL 690[J]. Mechanics of Materials, 1998, 30(1):69-81. [11] KHEN R, RUBIN M B. Analytical modelling of second order effects in large deformation plasticity[J]. International Journal of Solids and Structures, 1992, 29(18):2235-2258. [12] 周益春, 段祝平. 修正的Bodner-Partom本构模型[J]. 爆炸与冲击, 1993, 13(3):225-232. ZHOU Y C, DUAN Z P. Modified Bodner-Partom constitutive equation[J]. Explosion and Shock Waves, 1993, 13(3):225-232(in Chinese). [13] SUN X W, LI Y C, HUANG R Y, et al. Viscoplastic damage-softening constitutive model for concrete subjected to uniaxial dynamic compression[J]. Journal of Beijing Institute of Technology, 2017, 26(4):427-433. [14] BODNER S R, PARTOM I, PARTOM Y. Uniaxial cyclic loading of elastic-viscoplastic materials[J]. Journal of Applied Mechanics, 1979, 46(4):805-810. [15] CHAN K S, BODNER S R, LINDHOLM U S. Phenomenological modeling of hardening and thermal recovery in metals[J]. Journal of Engineering Materials and Technology, 1988, 110(1):1-8. [16] 卢孔汉, 张宏建, 贾鹏超. GH4169合金的循环本构模型研究[J]. 推进技术, 2019, 40(2):416-423. LU K H, ZHANG H J, JIA P C. Study on cyclic constitutive model for GH4169 alloy[J]. Journal of Propulsion Technology, 2019, 40(2):416-423(in Chinese). [17] 石多奇, 杨晓光, 王延荣. 一种考虑平均应力松弛的多级硬化本构模型[J]. 航空动力学报, 2007, 22(5):755-760. SHI D Q, YANG X G, WANG Y R. A multi-stage hardening constitutive model considering mean stress relaxation[J]. Journal of Aerospace Power, 2007, 22(5):755-760(in Chinese). [18] 肖阳, 秦海勤, 徐可君. 基于Bodner-Partom理论的FGH96合金本构建模研究[J]. 材料导报, 2020, 34(16):16125-16130. XIAO Y, QIN H Q, XU K J. Study on constitutive model for FGH96 superalloy based on Bodner-Partom theory[J]. Materials Reports, 2020, 34(16):16125-16130(in Chinese). [19] BARI S, HASSAN T. Anatomy of coupled constitutive models for ratcheting simulation[J]. International Journal of Plasticity, 2000, 16(3-4):381-409. [20] 杨晓光, 石多奇. 粘塑性本构理论及其应用[M]. 北京:国防工业出版社, 2013. YANG X G, SHI D Q. Viscoplastic constitutive theory and application[M]. Beijing:National Defense Industry Press, 2013(in Chinese). [21] STOUFFER D C, BODNER S R. A constitutive model for the deformation induced anisotropic plastic flow of metals[J]. International Journal of Engineering Science, 1979, 17(6):757-764. [22] KOCKS U F. Realistic constitutive relations for metal plasticity[J]. Materials Science and Engineering:A, 2001, 317(1-2):181-187. [23] KOCKS U F. Constitutive behavior based on crystal plasticity[M]. Dordrecht:Springer, 1987. [24] KOCKS U F, MECKING H. Physics and phenomenology of strain hardening:the FCC case[J]. Progress in Materials Science, 2003, 48(3):171-273. [25] PHILLIPS A, LEE C W. Yield surfaces and loading surfaces. Experiments and recommendations[J]. International Journal of Solids and Structures, 1979, 15(9):715-729. [26] ZIEBS J, MEERSMANN J, KUHN H J. Effects of proportional and nonproportional straining sequences on the hardening softening behavior of in 738-lc at elevated-temperatures[J]. European Journal of Mechanics a-Solids, 1994, 13(5):605-619. [27] ABDEL-KARIM M, OHNO N. Kinematic hardening model suitable for ratchetting with steady-state[J]. International Journal of Plasticity, 2000, 16(3-4):225-240. [28] MIZUNO M, MIMA Y, ABDEL-KARIM M, et al. Uniaxial ratchetting of 316FR steel at room temperature-part I:Experiments[J]. Journal of Engineering Materials and Technology, 2000, 122(1):29-34. [29] OHNO N, ABDEL-KARIM M. Uniaxial ratchetting of 316FR steel at room temperature-part II:Constitutive modeling and simulation[J]. Journal of Engineering Materials and Technology, 2000, 122(1):35-41. [30] DE SOUZA NETO E A. A simple robust numerical integration algorithm for a power-law visco-plastic model under both high and low rate-sensitivity[J]. Communications in Numerical Methods in Engineering, 2003, 20(1):1-17. [31] 周计明, 齐乐华. 率相关本构方程积分新算法[J]. 应用力学学报, 2009, 26(4):762-766, 839. ZHOU J M, QI L H. New integration algorithm of rate dependent constitutive equation[J]. Chinese Journal of Applied Mechanics, 2009, 26(4):762-766, 839(in Chinese). |