ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2021, Vol. 42 ›› Issue (4): 524310-524310.doi: 10.7527/S1000-6893.2020.24310
• Review • Previous Articles Next Articles
WANG Dayi1, HOU Bowen1,2, WANG Jiongqi2, GE Dongming1, LI Maodeng3, XU Chao3, ZHOU Haiyin2
Received:
2020-05-28
Revised:
2020-06-16
Published:
2020-07-06
Supported by:
CLC Number:
WANG Dayi, HOU Bowen, WANG Jiongqi, GE Dongming, LI Maodeng, XU Chao, ZHOU Haiyin. State estimation method for spacecraft autonomous navigation: Review[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(4): 524310-524310.
[1] 杨保华. 航天器制导、导航与控制[M]. 北京:中国科学技术出版社, 2011. YANG B H. Spacecraft guidance, navigation and control[M]. Beijing:China Science and Technology Press, 2011(in Chinese). [2] 王大轶, 魏春岭, 熊凯. 航天器自主导航技术[M]. 北京:国防工业出版社, 2017(in Chinese). WANG D Y, WEI C L, XIONG K. Autonomous spacecraft navigation technology[M]. Beijing:National Defense Industry Press, 2017. [3] TRUSZKOWSKI W, HALLOCK H, ROUFF C, et al. Autonomous and autonomic systems:With applications to NASA intelligent spacecraft operations and exploration systems[M]. Berlin:Springer Science & Business Media, 2009:1-4. [4] CHORY M, HOFFMAN D, LEMAY J. Satellite autonomous navigation-status and history[C]//PLANS'86-Position Location and Navigation Symposium, 1986:110-121. [5] BHATIA R, GELLER D K. RAON:Revolution in Autonomous Orbital Navigation[C]//AAS Guidance and Control Conference, 2018:18-81. [6] KOZOREZ D A, KRUZHKOV D M. Autonomous navigation of the space debris collector[J]. INCAS Bulletin, 2019, 11:105-113. [7] GREWAL M S, ANDREWS A P. Applications of Kalman filtering in aerospace 1960 to the present historical perspectives[J]. IEEE Control Systems Magazine, 2010, 30(3):69-78. [8] 秦永元, 张洪钺, 汪叔华. 卡尔曼滤波与组合导航原理[M]. 2版.西安:西北工业大学出版社, 2012:3-4. QIN Y Y, ZHANG H Y, WANG S H. Kalman filtering and integrated navigation principles[M]. 2nd Edition. Xi'an:Northwestern Polytechnical University Press, 2012:3-4(in Chinese). [9] 王大轶, 李茂登, 黄翔宇, 等. 航天器多源信息融合自主导航技术[M]. 北京:北京理工大学出版社, 2018:1-8. WANG D Y, LI M D, HUANG X Y et al. Spacecraft autonomous navigation technology based on multi-source information fusion[M]. Beijing:Beijing Institute of Technology Press, 2018:1-8(in Chinese). [10] KALMAN R E. Contributions to the theory of optimal control[J]. Computer Science, Mathematics, 1960, 5(2):102-119. [11] KALMAN R E. On the general theory of control systems[C]//Proceedings First International Conference on Automatic Control, 1960. [12] KALMAN R E. Mathematical description of linear dynamical systems[J]. Journal of the Society for Industrial and Applied Mathematics, Series A:Control, 1963, 1(2):152-192. [13] 张莲, 胡晓倩, 王士彬. 现代控制理论[M]. 北京:清华大学出版社, 2008. ZHANG L, HU X Q, WANG S B. Modern control theory[M]. Beijing:Tsinghua University Press, 2008(in Chinese). [14] MÜLLER P, WEBER H. Analysis and optimization of certain qualities of controllability and observability for linear dynamical systems[J]. Automatica, 1972, 8(3):237-246. [15] BAR-ITZHACK I. Observability studies of inertial navigation systems[C]//Guidance, Navigation and Control Conference, 1989:3580. [16] BAR-ITZHACK I. Observability analysis of inertial navigation systems during in-flight alignment[C]//Guidance, Navigation and Control Conference, 1988:4125. [17] KAILATH T. Linear systems[M]. Englewood Cliffs:Prentice-Hall, 1980:24-30. [18] CHEN Z, JIANG K, HUNG J C. Local observability matrix and its application to observability analyses[C]//IECON'90:16th Annual Conference of IEEE Industrial Electronics Society, 1990:100-103. [19] GOSHEN-MESKIN D, BARITZHACK I Y. Observability analysis of piece-wise constant systems. I. Theory[J]. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(4):1056-1067. [20] GOSHEN-MESKIN D, BAR-ITZHACK I. Observability analysis of piece-wise constant systems. Ⅱ. Application to inertial navigation in-flight alignment (military applications)[J]. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(4):1068-1075. [21] 杨拥民. 动态系统可观测性分析与应用若干关键技术研究[D]. 长沙:国防科学技术大学, 2014:4. YANG Y M. Research on some key technologies of observability analysis and application of dynamic system[D]. Changsha:National University of Defense Technology 2014:4(in Chinese). [22] HERMANN R, KRENER A. Nonlinear controllability and observability[J]. IEEE Transactions on Automatic Control, 1977, 22(5):728-740. [23] ISIDORI A. Nonlinear control systems[M]. Berlin:Springer-Verlag, 1985. [24] LÓPEZ T, ALVAREZ J. On the effect of the estimation structure in the functioning of a nonlinear copolymer reactor estimator[J]. Journal of Process Control, 2004, 14(1):99-109. [25] VAN D H J, MUGELLESI R. Analytical models for relative motion under constant thrust[J]. Journal of Guidance Control & Dynamics, 1990, 13(4):644-650. [26] JIUREN L I, HAIYANG L I, TANG G J, et al. Research on the strategy of angles-only relative navigation for autonomous rendezvous[J]. Science China Technological Sciences, 2011, 54(7):221-228. [27] DOCHAIN D, TALI-MAAMAR N, BABARY J. On modelling, monitoring and control of fixed bed bioreactors[J]. Computers & Chemical Engineering, 1997, 21(11):1255-1266. [28] LUO X, BHAKTA T. Estimating observation error covariance matrix of seismic data from a perspective of image denoising[J]. Computational Geosciences, 2017, 21(2):205-222. [29] LEE T S, DUNN K P, CHANG C B. On observability and unbiased estimation of nonlinear systems[M]//System Modeling and optimization. Berlin:Springer Verlag, 1982:258-266. [30] OGAWA J. Contributions to the theory of systematic statistics. I[J]. Osaka Mathematical Journal, 1951, 3(2):175-213. [31] CRAMER H. Mathematical methods of statistics[M]. Princeton:Princeton University Press, 1946:525-548. [32] SIMON D. Optimal state estimation:Kalman, H-infinity, and nonlinear approaches[M]. Hoboken:John Wiley & Sons, 2006:55. [33] 潘泉, 杨峰, 叶亮, 等. 一类非线性滤波器——UKF综述[J]. 控制与决策, 2005, 20(5):481-489,494. PAN Q, YANG F, YE L, et al. Survey of a kind of nonlinear filters-UKF[J]. Control and Decision, 2005, 20(5):481-489,494(in Chinese). [34] BELL B M, CATHEY F W. The iterated Kalman filter update as a Gauss-Newton method[J]. IEEE Transactions on Automatic Control, 1993, 38(2):294-297. [35] WANG D, LI M, HUANG X, et al. Kalman filtering for a quadratic form state equality constraint[J]. Journal of Guidance Control & Dynamics, 2014, 37(3):951-958. [36] JIAO Y, ZHOU H, WANG J, et al. Linearization error? s measure and its influence on the accuracy of MEKF based attitude determination method[J]. Aerospace Science & Technology, 2012, 16(1):61-69. [37] GORDON N J, SALMOND D J, SMITH A F M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation[J]. IEE Proceedings F:Radar and Signal Processing,1993, 140(2):107-113. [38] ARULAMPALAM M S, MASKELL S, GORDON N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J]. IEEE Transactions on Signal Processing, 2002, 50(2):174-188. [39] ZHAN R, XIN Q, WAN J W. Modified unscented particle filter for nonlinear Bayesian tracking[J]. Journal of Systems Engineering and Electronics, 2008, 19(1):7-14. [40] HOU B, HE Z, SUN B, et al. Unscented particle filter for α-Jerk model with colored noise[C]//2017 Chinese Automation Congress (CAC), 2017:6178-6183. [41] JULIER S, UHLMANN J, DURRANTWHYTE H F. A new method for nonlinear transformation of means and covariances in filters and estimates[J]. IEEE Transactions on Automatic Control, 2000, 45(3):477-482. [42] JULIER S J, UHLMANN J K. Reduced sigma point filters for the propagation of means and covariances through nonlinear transformations[C]//Proceedings of the 2002 American Control Conference, 2002:887-892. [43] ARULAMPALAM M S, MASKELL S, GORDON N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J].IEEE Transactions on Signal Processing, 2002, 50(2):174-188. [44] LIGGINS M, HALL D, LLINAS J. Handbook of multisensor data fusion:Theory and practice[M]. Florida:CRC Press, 2017:319-344. [45] JULIER S J, UHLMANN J K. New extension of the Kalman filter to nonlinear systems[C]//Signal Processing, Sensor Fusion, and Target Recognition VI. Orlando:Multisensor Fusion Tracking and Resource Management, 1997:182-193. [46] 刘也. 弹道目标实时跟踪的稳健高精度融合滤波方法[D]. 长沙:国防科学技术大学, 2011:37-68. LIU Y. The robust and high accurate fusion filter for trajectory target realtime tracking[D]. Changsha:National University of Defense Technology, 2011:37-68(in Chinese). [47] YIN J, ZHANG J Q, ZESEN Z. Gaussian sum PHD filtering algorithm for nonlinear non-Gaussian models[J]. Chinese Journal of Aeronautics, 2008, 21(4):341-351. [48] KOTECHA J H, DJURIC P M. Gaussian sum particle filtering[J]. IEEE Transactions on Signal Processing, 2003, 51(10):2602-2612. [49] ČURN J, MARINESCU D, LACEY G, et al. Estimation with non-white Gaussian observation noise using a generalized ensemble Kalman filter[C]//2012 IEEE International Symposium on Robotic and Sensors Environments Proceedings. Piscataway, NJ:IEEE Press, 2012:85-90. [50] 朱蓉. CKF滤波算法及其在航天器自主导航中的应用[D]. 长沙:国防科学技术大学, 2015:1-10. ZHU R. CKF and its application on spacecraft autonomous navigation[D]. Changsha:National University of Defense Technology, 2015:1-10(in Chinese). [51] 卢航, 郝顺义, 彭志颖, 等. 基于边缘采样的简化高阶CKF在非线性快速传递对准中的应用[J]. 航空学报, 2019, 40(3):189-202. LU H, HAO S Y, PENG Z Y, et al. Applica tion of marginal reduced high-degree cubature Kalman filter to nonlinear rapid transfer alignment[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(3):189-202(in Chinese). [52] ZHAO X, LIU G, WANG L, et al. Augmented cubature Kalman filter/Kalman filter integrated algorithm[J]. Infrared & Laser Engineering, 2014, 43(2):647-653. [53] 李敏, 张迎春, 耿云海, 等. 鲁棒EKF在脉冲星导航系统中的应用[J].航空学报, 2016, 37(4):1305-1315. LI M, ZHANG Y C, GENG Y H, et al. A robust extended Kalman filter algorithm for X-ray pulsar navigation system[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(4):1305-1315(in Chinese). [54] ELSAYED A, GRIMBLE M. A new approach to the H∞ design of optimal digital linear filters[J]. IMA Journal of Mathematical Control and Information, 1989, 6(2):233-251. [55] GRIMBLE M J, ELSAYED A. Solution of the H/sub infinity/optimal linear filtering problem for discrete-time systems[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1990, 38(7):1092-1104. [56] DE SOUZA C E, FRAGOSO M D. H infinity filtering for discrete-time linear systems with Markovian jumping parameters[J]. International Journal of Robust and Nonlinear Control:IFAC-Affiliated Journal, 2003, 13(14):1299-1316. [57] LU X, XIE L, ZHANG H, et al. Robust Kalman filtering for discrete-time systems with measurement delay[J]. IEEE Transactions on Circuits and Systems Ⅱ:Express Briefs, 2007, 54(6):522-526. [58] HASSIBI B, KAILATH T. H infinity adaptive filtering[C]//International Conference on Acoustics, Speech, and Signal Processing, 1995:949-952. [59] XIONG K, LIU L D, LIU Y W. Regularized robust filter for spacecraft attitude determination[J]. Chinese Journal of Aeronautics, 2011, 24(4):467-475. [60] PETRUS P. Robust Huber adaptive filter[J]. IEEE Transactions on Signal Processing, 1999, 47(4):1129-1133. [61] PRINCIPE J C. Information theoretic learning:Renyi's entropy and kernel perspectives[M]. Berlin:Springer Science & Business Media, 2010:257-489. [62] CHEN B, LIU X, ZHAO H, et al. Maximum correntropy Kalman filter[J]. Automatica, 2017, 76(1):70-77. [63] HOU B, HE Z, ZHOU X, et al. Maximum correntropy criterion Kalman filter for α-Jerk tracking model with non-Gaussian noise[J]. Entropy, 2017, 19(12):648. [64] HOU B, HE Z, LI D, et al. Maximum correntropy unscented Kalman filter for ballistic missile navigation system based on SINS/CNS deeply Integrated Mode[J]. Sensors, 2018, 18(6):1724. [65] XIE X Q, ZHOU D H, JIN Y H. Strong tracking filter based adaptive generic model control[J]. Journal of Process Control, 1999, 9(4):337-350. [66] SAGE A P, HUSA G W. Adaptive filtering with unknown prior statistics[C]//Joint Automatic Control Conference, 1969(7):760-769. [67] 朱云峰,孙永荣,赵伟,等.包含乘性噪声自适应修正的非合作目标相对导航算法[J].航空学报,2019,40(7):245-255. ZHU Y F, SUN Y R, ZHAO W, et al. Relative navigation algorithm for non-cooperative target with adaptive modification of multiplicative noise[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(7):245-255(in Chinese). [68] MAGILL D T. Optimal adaptive estimation of sampled stochastic processes[J]. IEEE Transactions on Automatic Control, 1965, 10(4):434-439. [69] BLOM H P. An efficient filter for abruptly changing systems[C]//IEEE Conference on Decision and Control, 1984:656-658. [70] LI X R, BAR-SHALOM Y. Multiple-model estimation with variable structure[J]. IEEE Transactions on Automatic Control, 1996, 41(4):478-493. [71] LI W, JIA Y. An information theoretic approach to interacting multiple model estimation[J]. IEEE Transactions on Aerospace & Electronic Systems, 2015, 51(3):1811-1825. [72] 熊智, 邵慧, 华冰, 等. 改进故障隔离的容错联邦滤波[J]. 航空学报, 2015, 36(3):929-938. XIONG Z, SHAO H, HUA B, et al. An improved fault tolerant federated filter with fault isolation[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(3):929-938(in Chinese). [73] MUTAMBARA A G. Decentralized estimation and control for multisensor systems[M]. Florida:CRC press, 1998:34-57. [74] HALL D L, MCMULLEN S A. Mathematical techniques in multisensor data fusion[M]. Fitchburg:Artech House, 2004:1-6. [75] 何友, 王国宏, 陆大金, 等. 多传感器信息融合及应用[M]. 北京:国防工业出版社, 2000:102-134. HE Y, WANG G H, LU D J, et al. Multi-sensor information fusion and application[M]. Beijing:National Defense Industry Press, 2000:102-134(in Chinese). [76] 韩崇昭, 朱洪艳, 段战胜. 多源信息融合[M]. 第2版.北京:清华大学出版社, 2010:267-324. HAN C Z, ZHU H Y, DUAN Z S. Multi-source Information Fusion[M]. (2nd Edition). Beijing:Tsinghua University Press, 2010:267-324(in Chinese). [77] 余安喜, 胡卫东, 周文辉. 多传感器量测融合算法的性能比较[J]. 国防科技大学学报, 2003, 25(6):39-44. YU A, HU W, ZHOU W. Performance comparison of multisensor measurement fusion algorithms[J]. Journal of National University of Defense Technology, 2003, 25(6):39-44(in Chinese). [78] 管旭军, 芮国胜, 周旭, 等. 基于数据压缩的多传感器不敏滤波算法[J]. 武汉大学学报(信息科学版), 2010, 35(4):97-101. GUAN X J, RUI G S, ZHOU X, et al. Multisensor unscented filter algorithm based on data compression[J]. Geomatics and Information Science of Wuhan University, 2010, 35(4):97-101(in Chinese). [79] ROY S, ILTIS R A. Decentralized linear estimation in correlated measurement noise[J]. IEEE Transactions on Aerospace and Electronic Systems, 1991, 27(6):939-941. [80] JIN X B, SUN Y X. Optimal centralized state fusion estimation for multi-sensor system with correlated measurement noise[C]//Proceedings of 2003 IEEE Conference on Control Applications. Piscetaway:IEEE Press, 2003:770-772. [81] LI X R. Canonical transform for tracking with kinematic models[J]. IEEE Transactions on Aerospace and Electronic Systems, 1997, 33(4):1212-1224. [82] CARLSON N A. Federated filter for fault-tolerant integrated navigation systems[C]//IEEE PLANS'88. Position Location and Navigation Symposium, Record. ‘Navigation into the 21 st Century’, Piscetaway:IEEE Press, 1988. [83] LI M, JING W, HUANG X. Dual cone-Scanning horiozon sensor orbit and attitude corrections for Earth Oblateness[J]. Journal of Guidance Control & Dynamics, 2012, 35(1):344-349. [84] XIONG K, LIU L. Compensation for periodic star sensor measurement error on satellite[J]. Asian Journal of Control, 2013, 15(5):1304-1312. [85] XIONG K, ZONG H. Performance evaluation of star sensor low frequency error calibration[J]. Acta Astronautica, 2014, 98(1):24-36. [86] YANG J, WANG K, XIONG K. In-orbit error calibration of star sensor based on high resolution imaging payload[C]//2016 IEEE Sensors. Piscataway:IEEE Press, 2015. [87] KIM K H, LEE J G, PARK C G. Adaptive two-stage extended Kalman filter for a fault-tolerant INS-GPS loosely coupled system[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(1):125-137. [88] LIU H B, TAN J C, JIA H, et al. Autonomous on-orbit calibration of a star tracker camera[J]. Optical Engineering, 2011, 50(2):023604. [89] 张春青, 刘良栋, 李勇. 测量带有常值偏差时卫星自主定轨系统可观性分析[J]. 中国空间科学技术, 2006, 26(6):1-7.13. ZHANG C L, LIU L D, LI Y. Observability analysis for biased satellites autonomous orbit determination systems[J]. Chinese Space Science and Technology, 2006, 6(1):1-13(in Chinese). [90] 魏春岭, 张斌, 张春青. 一种姿态机动辅助下的天文导航系统偏差自校准方法[J]. 宇航学报, 2010, 31(1):93-97. WEI C L, ZHANG B, ZHANG C Q. An attitude maneuvering aided self-calibration algorithm for celestial autonomous navigation system[J]. Journal of Astronautics, 2010, 31(1):93-97(in Chinese). [91] 宁晓琳,房建成.航天器自主天文导航系统的可观测性及可观测度分析[J]. 北京航空航天大学学报, 2005, 31(6):673-677. NING X, FANG J. Analysis of observability and the degree of observability in autonomous celestial navigation[J]. Journal of Beijing University of Aeronautics & Astronautics, 2005, 31(6):103-116(in Chinese). [92] NING X, WANG F, FANG J. Implicit UKF and its observability analysis of satellite stellar refraction navigation system[J]. Aerospace Science and Technology, 2016, 54(1):49-58. [93] QIAO G, WANG D, LI T. Observability analysis of autonomous navigation system for Earth-lunar transfer orbit phase[C]//IEEE International Conference on Robotics and Biomimetics. Piscataway:IEEE Press, 2008:946-951. [94] XIONG K, WEI C L, LIU L D. Autonomous navigation for a group of satellites with star sensors and inter-satellite links[J]. Acta Astronautica, 2013, 86(3):10-23. [95] GAIAS G, D'AMICO S, ARDAENS J-S. Angles-only navigation to a noncooperative satellite using relative orbital elements[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(2):439-451. [96] AMICO S D, ARDAENS J, GAIAS G, et al. Noncooperative rendezvous using angles-only optical navigation:system design and flight results[J]. Journal of Guidance Control and Dynamics, 2013, 36(6):1576-1595. [97] SULLIVAN J, D'AMICO S. Nonlinear Kalman filtering for improved angles-only navigation using relative orbital elements[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(9):1-18. [98] GONG B, LUO J, LI S, et al. Observability criterion of angles-only navigation for spacecraft proximity operations[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2019, 233(12):4302-4315. [99] LI Y, ZHANG A. Observability analysis and autonomous navigation for two satellites with relative position measurements[J]. Acta Astronautica, 2019, 163(1):77-86. [100] FENG G, WU W, WANG J. Observability analysis of a matrix Kalman filter-based navigation system using visual/inertial/magnetic sensors[J]. Sensors, 2012, 12(7):8877-8894. [101] WANG L, XIA Y. Observability analysis of Mars entry integrated navigation[J]. Advances in Space Research, 2015, 56(5):952-963. [102] 黄翔宇, 崔平远, 崔祜涛. 深空自主导航系统的可观性分析[J]. 宇航学报, 2006, 27(3):332-337. HUANG X Y, CUI P Y, CUI H T. Observability analysis of deep space autonomous navigation system[J]. Journal of Astronautics, 2006, 27(3):332-337(in Chinese). [103] 董天舒, 王大轶, 李文博. 近地小行星仅测角相对导航可观性判据[J]. 控制理论与应用, 2019, 36(12):1979-1987. DONG T S, WANG D Y, LI W B, Observability criteria for angles-only relative navigation to a near-Earth asteroid[J]. Control Theory & Application, 2019, 36(12):1979-1987(in Chinese). [104] XU C, WANG D, HUANG X. Autonomous navigation based on sequential images for planetary landing in unknown environments[J]. Journal of Guidance Control and Dynamics, 2017, 40(10):2587-2602. [105] 刘萍, 王大轶, 黄翔宇. 环月探测器自主天文导航系统的可观度分析[J]. 中国空间科学技术, 2007, 27(6):12-18. LIU P, WANG D Y, HUANG X Y. Analysis of observable degree in autonomous celestial navigation system of Lunar Orbiter[J]. Chinese Space Science and Technology, 2007, 27(6):12-18(in Chinese). [106] BHASKARAN S, RIEDEL J E, SYNNOTT S P. Autonomous nucleus tracking for comet/asteroid encounters:The STARDUST example[C]//1998 IEEE Aerospace Conference Proceedings. Snowmass:IEEE Aerospace and Electronics Systems Society, 1998:353-365. [107] PSIAKI M L. Global magnetometer-based spacecraft attitude and rate estimation[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(2):240-250. [108] IWATA T. Attitude dynamics and disturbances of the advanced land observing satellite (ALOS):Modeling, identification, and mitigation[C]//AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Reston:AIAA, 2008:6263. [109] LI M Z, XU B. Autonomous orbit and attitude determination for Earth satellites using images of regular-shaped ground objects[J]. Aerospace Science and Technology, 2018, 80(1):192-202. [110] 崔平远, 常晓华, 崔祜涛. 基于可观测性分析的深空自主导航方法研究[J]. 宇航学报, 2011, 32(10):2115-2124. CUI P Y, CHANG X H, CUI H T. Research on observability analysis-based autonomous navigation method for deep space[J]. Journal of Astronautics, 2011, 32(10):2115-2124(in Chinese). [111] SEKHAVAT P, GONG Q, ROSS I M. NPSAT1 parameter estimation using unscented Kalman filtering[C]//2007 American Control Conference,2007:4445-4451. [112] CÔTÉ J, DE LAFONTAINE J. Magnetic-only orbit and attitude estimation using the square-root unscented Kalman filter:application to the PROBA-2 spacecraft[C]//AIAA Guidance, Navigation and Control Conference and Exhibit.Reston:AIAA, 2008:6293. [113] NORDLUND P J, GUSTAFSSON F. Sequential Monte Carlo filtering techniques applied to integrated navigation systems[C]//American Control Conference, 2001:4375-4380. [114] NING X, FANG J. Spacecraft autonomous navigation using unscented particle filter-based celestial/Doppler information fusion[J]. Measurement Science and Technology, 2008, 19(9):095203. [115] CHANDRA K P B, GU D W, POSTLETHWARITE I. Cubature Kalman filter based localization and mapping[J]. IFAC Proceedings Volumes, 2011, 44(1):2121-2125. [116] 邓广慧, 廖卓凡, 朱蓉, 等. 基于日地月信息的航天器全弧段自主容积卡尔曼滤波导航[J]. 中国空间科学技术, 2018, 38(1):70. DENG G H, LIAO Z F, ZHU R, et al. Spacecraft autonomous navigation with cubature Kalman filter based on Sun-Earth-Moon information[J]. Chinese Space Science and Technology, 2018, 38(1):70(in Chinese). [117] 孙兆伟, 邓泓, 刘皓, 等. 基于鲁棒H∞ 滤波的追踪卫星相对导航算法研究[J]. 宇航学报, 2011, 32(7):1462-1470. SUN Z W, DENG H, LIU H, et al. Relative navigation algorithm for chaser satellite based on robust H∞ filtering[J]. Journal of Astronautics, 2011, 32(7):1462-1470(in Chinese). [118] WANG X, CUI N, GUO J. Huber-based unscented filtering and its application to vision-based relative navigation[J]. IET Radar, Sonar & Navigation, 2010, 4(1):134-141. [119] KARLGAARD C D, SCHAUB H. Adaptive nonlinear Huber-based navigation for rendezvous in elliptical orbit[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(2):388-402. [120] LIU X, QU H, ZHAO J, et al. Maximum correntropy unscented Kalman filter for spacecraft relative state estimation[J]. Sensors, 2016, 16(9):1530. [121] 李丹, 刘建业, 熊智. 强跟踪滤波器在卫星紫外导航中的应用研究[J]. 传感器与微系统, 2008, 27(9):11-13. LI D, LIU J Y, XIONG Z. Application research of strong tracking filter in satellite navigation system based on ultraviolet sensor[J]. Transducer and Microsystem Technologies, 2008, 27(9):11-13(in Chinese). [122] 任之幸. 自适应自主卫星导航方法的研究[J]. 宇航学报, 1986, 7(3):44-50. REN Z X. An approach of adaptive-autonomous satellite navigation[J]. Journal of Astronautics, 1986, 7(3):44-50(in Chinese). [123] XIONG K, LIANG T, LEI Y J. Multiple model Kalman filter for attitude determination of precision pointing spacecraft[J]. Acta Astronautica, 2011, 68(8):843-852. [124] 彭慧. 多模型自适应滤波及其应用研究[D]. 成都:电子科技大学, 2016:41-48. PENG H. Study on multi-model adaptive filtering and its application[D]. Chengdu:University of Electronic Science and Technology of China, 2016:41-48(in Chinese). [125] 刘勇,徐世杰.基于联邦UKF算法的月球探测器自主组合导航[J]. 宇航学报, 2006, 27(3):518-521, 540. LIU Y, XU S J. Autonomous integrated navigation for lunar probe based on federated UKF algorithm[J]. Journal of Astronautics, 2006, 27(3):518-521, 540(in Chinese). [126] QIAO L, LIU J, ZHENG G, et al. Integration of ultraviolet sensor and X-ray detector for navigation satellite orbit estimation[C]//2008 IEEE/ION Position, Location and Navigation Symposium. Monterey:The Institute of Navigation, 2008:696-703. [127] HU X B, ZHAO J H, TU Z J. Research on the method of suppressing sun and moon's interference on infrared conical earth sensor[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2015, 229(3):399-406. [128] WANG J Q, XIONG K, ZHOU H Y. Low-frequency periodic error identification and compensation for star tracker attitude measurement[J]. Chinese Journal of Aeronautics, 2012, 25(4):615-621. [129] 程会艳, 郝云彩, 熊凯, 等. 自适应两级UKF算法及其在时变偏差估计中的应用[J]. 空间控制技术与应用, 2010, 36(3):33-37. CHENG H Y, HAO Y C, XIONG K. An adaptive two-stage unscented Kalman filter and its application in unknown random bias[J]. Aerospace Control and Application, 2010, 36(3):33-37(in Chinese). [130] ZHANG H, NIU Y, LU J, et al. On-orbit calibration for star sensors without priori information[J]. Optics Express, 2017, 25(15):18393-18409. [131] WANG M, CHENG Y, YANG B, et al. On-orbit calibration approach for optical navigation camera in deep space exploration[J]. Optics Express, 2016, 24(5):5536-5554. [132] CHANG J, GENG Y, GUO J, et al. Calibration of satellite autonomous navigation based on attitude sensor[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(1):185-192. |
[1] | Honglin ZHANG, Jianjun LUO, Weihua MA. Spacecraft game decision making for threat avoidance of space targets based on machine learning [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 329136-329136. |
[2] | Ruitong ZHANG, Lei WANG, Jiajia LIU, Jihong ZHU. Lightweight design of space trusses considering joint parameterization [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529715-529715. |
[3] | Jidong SU, Weilin XU, Shenghua ZHAI, Wei WANG, Yating HE. Practice and prospect of space AD hoc network technology [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529912-529912. |
[4] | Weiping YANG. Development trend of navigation guidance and control technology for new generation aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529720-529720. |
[5] | Sai ZHANG, Zhen YANG, Xiangnan DU, Yazhong LUO. Threat avoidance strategy of spacecraft maneuvering approach based on orbital reachable domain [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 328778-328778. |
[6] | Kai NING, Baolin WU. Event-triggered-based orbit maintenance control for spacecraft subsatellite point control [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(10): 329412-329412. |
[7] | Ming LIU, Ruichao FAN, Shi QIU, Xibin CAO. Spacecraft attitude-orbit prescribed performance control based on fully actuated system approach [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 628313-628313. |
[8] | Kaixin CUI, Guangren DUAN. High⁃order fully actuated anti⁃disturbance control for a type of combined spacecraft based on disturbance observer [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 628892-628892. |
[9] | Chao DUAN, Xiaodong SHAO, Qinglei HU, Huaining WU. Attitude tracking of underactuated spacecraft based on transverse function [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 628910-628910. |
[10] | Dawei ZHANG, Guoping LIU. A high⁃order fully actuated predictive control approach of spacecraft flying⁃around under time⁃variant communication constraints [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 628633-628633. |
[11] | Leyan FANG, Han MENG, Mingzhe HOU. Iterative learning sliding mode control with precise parameter estimation and its application [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 628889-628889. |
[12] | Guangquan DUAN, Guoping LIU. Adaptive prescribed control of position and attitude of combined spacecraft based on fully actuated system approach [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 628837-628837. |
[13] | Bing XIAO, Haichao ZHANG. Reinforcement learning robust optimal control for spacecraft attitude stabilization [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 628890-628890. |
[14] | Yuemeng MA, Ming LIU, Ding YANG, Ming YANG, Mingang ZHANG, Yajie GE. Prescribed performance and anti⁃noise control of near space vehicle with thermal constraint [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729390-729390. |
[15] | Xiaolong DENG, Xixiang YANG, Bingjie ZHU, Zhenyu MA, Zhongxi HOU. Simulation research and key technologies analysis of intelligent stratospheric aerostat Loon [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(8): 127412-127412. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341