Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (1): 628890-628890.doi: 10.7527/S1000-6893.2023.28890
• Special Topic: Fully Actuated System Theory and Its Applications in Aerospace Field • Previous Articles Next Articles
Received:
2023-04-19
Revised:
2023-06-05
Accepted:
2023-10-07
Online:
2024-01-15
Published:
2023-10-08
Contact:
Bing XIAO
E-mail:xiaobing@nwpu.edu.cn
CLC Number:
Bing XIAO, Haichao ZHANG. Reinforcement learning robust optimal control for spacecraft attitude stabilization[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 628890-628890.
1 | HUANG W, RONG W, LIU D H, et al. Design and realization of recovery system of Chang’e-5 reentry spacecraft[J]. Space Science & Technology, 2021(1): 133-142. |
2 | HUANG X Y, LI M D, WANG X L, et al. The Tianwen-1 guidance, navigation, and control for Mars entry, descent, and landing[J]. Space Science & Technology, 2021, 2021(4): 1-13. |
3 | LI J F, WANG Y B, LIU Z Y, et al. A new recursive composite adaptive controller for robot manipulators[J]. Space Science & Technology, 2021(1): 77-83. |
4 | 马广富, 朱庆华, 王鹏宇, 等. 基于终端滑模的航天器自适应预设性能姿态跟踪控制[J]. 航空学报, 2018, 39(6): 321763. |
MA G F, ZHU Q H, WANG P Y, et al. Adaptive prescribed performance attitude tracking control for spacecraft via terminal sliding-mode technique[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(6): 321763 (in Chinese). | |
5 | SCHAUB H, AKELLA M R, JUNKINS J L. Adaptive control of nonlinear attitude motions realizing linear closed loop dynamics[J]. Journal of Guidance, Control, and Dynamics, 2001, 24(1): 95-100. |
6 | XIAO B, CAO L, RAN D C. Attitude exponential stabilization control of rigid bodies via disturbance observer[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(5): 2751-2759. |
7 | CRASSIDIS J L, MARKLEY F L. Sliding mode control using modified Rodrigues parameters[J]. Journal of Guidance, Control, and Dynamics, 1996, 19(6): 1381-1383. |
8 | 朱庆华, 董瑞琦, 马广富. 基于动态滑模控制的挠性航天器姿态控制[J]. 控制理论与应用, 2018, 35(10): 1430-1435. |
ZHU Q H, DONG R Q, MA G F. Dynamical sliding mode for flexible spacecraft attitude control[J]. Control Theory & Applications, 2018, 35(10): 1430-1435 (in Chinese). | |
9 | KRSTIC M, TSIOTRAS P. Inverse optimal stabilization of a rigid spacecraft[J]. IEEE Transactions on Automatic Control, 1999, 44(5): 1042-1049. |
10 | SHARMA R, TEWARI A. Optimal nonlinear tracking of spacecraft attitude maneuvers[J]. IEEE Transactions on Control Systems Technology, 2004, 12(5): 677-682. |
11 | 张士峰, 钱山, 李鹏奎. 刚体航天器的最小能量姿态机动最优控制研究[J]. 宇航学报, 2009, 30(4): 1504-1509, 1515. |
ZHANG S F, QIAN S, LI P K. Study on the minimal energy maneuvering control of a rigid spacecraft with momentum transfer[J]. Journal of Astronautics, 2009, 30(4): 1504-1509, 1515 (in Chinese). | |
12 | WANG D, LIU D R, LI H L. Policy iteration algorithm for online design of robust control for a class of continuous-time nonlinear systems[J]. IEEE Transactions on Automation Science and Engineering, 2014, 11(2): 627-632. |
13 | WERBOS P J. Consistency of HDP applied to a simple reinforcement learning problem[J]. Neural Networks, 1990, 3(2): 179-189. |
14 | FAN Q, YANG G. Adaptive fault-tolerant control for affine non-linear systems based on approximate dynamic programming[J]. IET Control Theory and Ap-plications, 2016, 10(6): 655-663. |
15 | LEWIS F L, LIU D R. Reinforcement learning and approximate dynamic programming for feedback control[M]. Hoboken, Wiley, 2012, 4-10. |
16 | JIANG Y, JIANG Z P. Robust adaptive dynamic programming and feedback stabilization of nonlinear systems[J]. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(5): 882-893. |
17 | DONG H Y, ZHAO X W, YANG H Y. Reinforcement learning-based approximate optimal control for attitude reorientation under state constraints[J]. IEEE Transactions on Control Systems Technology, 2021, 29(4): 1664-1673. |
18 | 梁小辉, 胡昌华, 周志杰, 等. 基于自适应动态规划的运载火箭智能姿态容错控制[J]. 航空学报, 2021, 42(4): 524915. |
LIANG X H, HU C H, ZHOU Z J, et al. ADP-based intelligent attitude fault-tolerant control for launch vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524915 (in Chinese). | |
19 | JIANG Y, JIANG Z P. Computational adaptive optimal control for continuous-time linear systems with completely unknown dynamics[J]. Automatica, 2012, 48(10): 2699-2704. |
20 | VAMVOUDAKIS K G, LEWIS F L. Online actor-critic algorithm to solve the continuous-time infinite horizon optimal control problem[J]. Automatica, 2010, 46(5): 878-888. |
21 | WEN G X, GE S S, PHILIP CHEN C L, et al. Adaptive tracking control of surface vessel using optimized backstepping technique[J]. IEEE Transactions on Cybernetics, 2019, 49(9): 3420-3431. |
22 | HU Q L, YANG H Y, DONG H Y, et al. Learning-based 6-DOF control for autonomous proximity operations under motion constraints[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(6): 4097-4109. |
23 | NA J, WANG B, LI G, et al. Nonlinear constrained optimal control of wave energy converters with adaptive dynamic programming[J]. IEEE Transactions on Industrial Electronics, 2019, 66(10): 7904-7915. |
24 | LIU D R, WANG D, WANG F Y, et al. Neural-network-based online HJB solution for optimal robust guaranteed cost control of continuous-time uncertain nonlinear systems[J]. IEEE Transactions on Cybernetics, 2014, 44(12): 2834-2847. |
25 | ZHAO J, NA J, GAO G B. Robust tracking control of uncertain nonlinear systems with adaptive dynamic programming[J]. Neurocomputing, 2022, 471: 21-30. |
26 | SUN J L, LIU C S. Disturbance observer-based robust missile autopilot design with full-state constraints via adaptive dynamic programming[J]. Journal of the Franklin Institute, 2018, 355(5): 2344-2368. |
27 | FAN Q Y, YANG G H. Adaptive actor–critic design-based integral sliding-mode control for partially unknown nonlinear systems with input disturbances[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(1): 165-177. |
28 | ZHAO B, SHI G, WANG D. Asymptotically stable critic designs for approximate optimal stabilization of nonlinear systems subject to mismatched external disturbances[J]. Neurocomputing, 2020, 396: 201-208. |
29 | DONG H Y, ZHAO X W, HU Q, et al. Learning-based attitude tracking control with high-performance parameter estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58: 2218-2230. |
30 | YANG H Y, HU Q, DONG H Y, et al. ADP-based spacecraft attitude control under actuator misalignment and pointing constraints[J]. IEEE Transactions on Industrial Electronics, 2022, 69: 9342-9352. |
31 | RAN M P, LI J C, XIE L H. Reinforcement-learning-based disturbance rejection control for uncertain nonlinear systems[J]. IEEE Transactions on Cybernetics, 2022, 52(9): 9621-9633. |
32 | BHASIN S, KAMALAPURKAR R, JOHNSON M, et al. A novel actor-critic-identifier architecture for approximate optimal control of uncertain nonlinear systems[J]. Automatica, 2013, 49(1): 82-92. |
33 | ABU-KHALAF M, LEWIS F L. Nearly optimal control laws for nonlinear systems with saturating actuators using a neural network HJB approach[J]. Automatica, 2005, 41(5): 779-791. |
34 | SONG R Z, LEWIS F L, WEI Q L, et al. Off-policy actor-critic structure for optimal control of unknown systems with disturbances[J]. IEEE Transactions on Cybernetics, 2016, 46(5): 1041-1050. |
35 | POLYCARPOU M M, IOANNOU P A. A robust adaptive nonlinear control design[J]. Automatica, 1996, 32(3): 423-427. |
36 | 张国山, 胡伟, 郝君. 基于离策略和扰动补偿的未知非线性系统最优控制[J]. 吉林大学学报(工学版), 2022, 52(5): 1145-1152. |
ZHANG G S, HU W, HAO J. Optimal control for unknown nonlinear systems based on off-policy and disturbance compensation[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(5): 1145-1152 (in Chinese). |
[1] | Yuqing QIU, Yan LI, Jinxi LANG, Yuxian LIU, Zhong WANG. Robust adaptive attitude control of high-speed helicopters in transition mode [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529927-529927. |
[2] | Honglin ZHANG, Jianjun LUO, Weihua MA. Spacecraft game decision making for threat avoidance of space targets based on machine learning [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 329136-329136. |
[3] | Ruitong ZHANG, Lei WANG, Jiajia LIU, Jihong ZHU. Lightweight design of space trusses considering joint parameterization [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529715-529715. |
[4] | Jidong SU, Weilin XU, Shenghua ZHAI, Wei WANG, Yating HE. Practice and prospect of space AD hoc network technology [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529912-529912. |
[5] | Yunpeng CAI, Dapeng ZHOU, Jiangchuan DING. Intelligent collaborative control of UAV swarms with collision avoidance safety constraints [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529683-529683. |
[6] | Shengzhe SHAN, Weiwei ZHANG. Air combat intelligent decision-making method based on self-play and deep reinforcement learning [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 328723-328723. |
[7] | Sai ZHANG, Zhen YANG, Xiangnan DU, Yazhong LUO. Threat avoidance strategy of spacecraft maneuvering approach based on orbital reachable domain [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 328778-328778. |
[8] | Jiaxiu YANG, Xinkai LI, Hongli ZHANG, Hao WANG. Time-varying formation control for heterogeneous clusters with switching topologies via reinforcement learning [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(10): 329166-329166. |
[9] | Kai NING, Baolin WU. Event-triggered-based orbit maintenance control for spacecraft subsatellite point control [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(10): 329412-329412. |
[10] | Kaixin CUI, Guangren DUAN. High⁃order fully actuated anti⁃disturbance control for a type of combined spacecraft based on disturbance observer [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 628892-628892. |
[11] | Chao DUAN, Xiaodong SHAO, Qinglei HU, Huaining WU. Attitude tracking of underactuated spacecraft based on transverse function [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 628910-628910. |
[12] | Dawei ZHANG, Guoping LIU. A high⁃order fully actuated predictive control approach of spacecraft flying⁃around under time⁃variant communication constraints [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 628633-628633. |
[13] | Leyan FANG, Han MENG, Mingzhe HOU. Iterative learning sliding mode control with precise parameter estimation and its application [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 628889-628889. |
[14] | Guangquan DUAN, Guoping LIU. Adaptive prescribed control of position and attitude of combined spacecraft based on fully actuated system approach [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 628837-628837. |
[15] | Ming LIU, Ruichao FAN, Shi QIU, Xibin CAO. Spacecraft attitude-orbit prescribed performance control based on fully actuated system approach [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 628313-628313. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341