[1] 马立敏, 张嘉振, 岳广全, 等. 复合材料在新一代大型民用飞机中的应用[J]. 复合材料学报, 2015, 32(2):317-322. MA L M, ZHANG J Z, YUE G Q, et al. Application of composites in new generation of large civil aircraft[J]. Acta Materiae Compositae Sinica, 2015, 32(2):317-322(in Chinese). [2] 肖军, 李勇, 李建龙. 自动铺放技术在大型飞机复合材料结构件制造中的应用[J]. 航空制造技术, 2008(1):50-53. XIAO J, LI Y, LI J L. Automated placement technology application on large airplane composite component manufacture[J]. Aeronautical Manufacturing Technology, 2008(1):50-53(in Chinese). [3] XIE J, LU Y. Study on airworthiness requirements of composite aircraft structure for transport category aircraft in FAA[J]. Procedia Engineering, 2011, 17:270-278. [4] CHEN X. Experimental investigation on structural collapse of a large composite wind turbine blade under combined bending and torsion[J]. Composite Structures, 2017, 160:435-445. [5] CHEN X, ZHAO W, ZHAO X L, et al. Failure test and finite element simulation of a large wind turbine composite blade under static loading[J]. Energies, 2014, 7(4):2274-2297. [6] Federal Aviation Administration. Advisory circular AC 20-107B:composite aircraft structure[S]. Washington, D.C.:Federal Aviation Administration, 2009. [7] ASHIZAWA M, TOI Y. Unique features and innovative application of advanced composites to the MD-11:AIAA-1990-3217[R]. Reston:AIAA, 1990. [8] HARA E, YOKOZEKI T, HATTA H, et al. CFRP laminate out-of-plane tensile modulus determined by direct loading[J]. Composites Part A:Applied Science and Manufacturing, 2010, 41(10):1538-1544. [9] RUBIN A M. Common failure modes for composite aircraft structures due to secondary loads[J]. Composites Engineering, 1992, 2:313-320. [10] FERGUSON R F, HINTON M J, HILEY M J. Determining the through-thickness properties of FRP materials[J]. Composites Science and Technology, 1998, 58:1411-1420. [11] HARA E, YOKOZEKI T, HATTA H, et al. Effects of geometry and specimen size on out-of-plane tensile strength of aligned CFRP determined by direct tensile method[J]. Composites Part A:Applied Science and Manufacturing, 2010, 41(10):1425-1433. [12] HARA E, YOKOZEKI T, HATTA H, et al. Comparison of out-of-plane tensile moduli of CFRP laminates obtained by 3-point bending and direct loading tests[J]. Composites Part A:Applied Science and Manufacturing, 2014, 67:77-85. [13] GÜERDAL Z, TOMASINO A P, BIQQERS S B. Effects of processing induced defects on laminate response:interlaminar tensile strength[J]. SAMPE Journal, 1991, 27(4):39-49. [14] MARSH G. Automating aerospace composites production with fibre placement[J]. Reinforced Plastics, 2011, 55(3):32-37. [15] LUKASZEWICZ D H, WARD C, POTTER K. The engineering aspects of automated prepreg layup:History, present and future[J]. Composites Part B:Engineering, 2012, 43(3):997-1009. [16] LICHTINGER R, HÖRMANN P, HINTERHÖLZL R. The effects of heat input on adjacent paths during automated fibre placement[J]. Composites Part A:Applied Science and Manufacturing, 2015, 68:387-397. [17] JOHN J, GANGLOFF J, SIMACEK P, et al. A process model for the compaction and saturation of partially impregnated thermoset prepreg tapes[J]. Composites Part A:Applied Science and Manufacturing, 2014, 64:234-244. [18] BUDELMANN D, DETAMPEL H, SCHMIDT C, et al. Interaction of process parameters and material properties with regard to prepreg tack in automated lay-up and draping processes[J]. Composites Part A:Applied Science and Manufacturing, 2019, 117:308-316. [19] CROSSLEY R J, SCHUBEL P J, WARRIOR N A. The experimental determination of prepreg tack and dynamic stiffness[J]. Composites Part A:Applied Science and Manufacturing, 2012, 43(3):423-434. [20] 陆楠楠, 肖军, 齐俊伟, 等. 面向自动铺放的预浸料动态黏性实验[J]. 航空学报, 2014, 35(1):279-286. LU N N, XIAO J, QI J W, et al. Experimental research on prepreg dynamic tack based on automated placement process[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1):279-286(in Chinese). [21] STOKES-GRIFFIN C M, COMPSTON P. The effect of processing temperature and placement rate on the short beam strength of carbon fibre-PEEK manufactured using a laser tape placement process[J]. Composites Part A:Applied Science and Manufacturing, 2015, 78:274-283. [22] STOKES-GRIFFIN C M, COMPSTON P. Investigation of sub-melt temperature bonding of carbon-fibre/PEEK in an automated laser tape placement process[J]. Composites Part A:Applied Science and Manufacturing, 2016, 84:17-25. [23] QURESHI Z, SWAIT T, SCAIFE R, et al. In situ consolidation of thermoplastic prepreg tape using automated tape placement technology:Potential and possibilities[J]. Composites Part B:Engineering, 2014, 66:225-267. [24] CLANCY G, PEETERS D, OLIVERI V, et al. A study of the influence of processing parameters on steering of carbon fibre/PEEK tapes using laser-assisted tape placement[J]. Composites Part B:Engineering, 2019, 163:243-251. [25] LUKASZEWICZ D H, POTTER K, EALES J. A concept for the in situ consolidation of thermoset matrix prepreg during automated lay-up[J]. Composites Part B:Engineering, 2013, 45(1):538-543. [26] 段玉岗, 刘芬芬, 陈耀, 等. 纤维铺放压紧力及预浸带加热温度对复合材料力学性能的影响[J]. 复合材料学报, 2012, 29(4):148-156. DUAN Y G, LIU F F, CHEN Y, et al. Effects of compaction force and heating temperature of prepreg on composite mechanical properties during fiber placement process[J]. Acta Materiae Compositae Sinica, 2012, 29(4):148-156(in Chinese). [27] 张洋, 钟翔屿, 包建文. 先进树脂基复合材料自动丝束铺放技术研究现状及发展方向[J]. 航空制造技术, 2013, 443(23-24):131-140. ZHANG Y, ZHONG X Y, BAO J W. Research status and future trend of automated fiber placement technology for advanced polymer matrix composites[J]. Aeronautical Manufacturing Technology, 2013, 443(23-24):131-140(in Chinese). [28] American Society for Testing and Materials. Standard test method for through-thickness "flatwise" tensile strength and elastic modulus of a fiber-reinforced polymer matrix composite materials:ASTM D7291/D7291M-15[S]. West Conshohocken:ASTM International, 2015. [29] GHAYOOR H, MARSDEN C C, HOA S V, et al. Numerical analysis of resin-rich areas and their effects on failure initiation of composites[J]. Composites Part A:Applied Science and Manufacturing, 2019, 117:125-133 [30] 黄新杰, 肖军, 赵聪, 等. 自动铺丝成型工艺参数优化[J]. 玻璃纤维, 2015(6):20-26. HUANG X J, XIAO J, ZHAO C, et al. Process parameter optimization for automatic fiber placement[J]. Fiber Glass, 2015(6):20-26(in Chinese). [31] 盛磊. 纤维复合材料中孔隙的起因评述[J]. 航天返回与遥感, 1996, 17(2):42-53. SHENG L. An overview of causes on porosity in fiber composites[J]. Spacecraft Recovery & Remote Sensing, 1996, 17(2):42-53(in Chinese). [32] 薛斌, 关志东, 韩庚. 固化工艺参数对准各向同性层合板压缩性能影响试验研究[C]//第十五届中国科协年会第17分会场:复合材料与节能减排研讨会论文集, 2013:59-63. XUE B, GUAN Z D, HAN G. Influence of process parameters on compression strength of quasi-isotropic composite laminates-experimental[C]//Proceedings of the 17th Session of the 15th Annual Conference of China Association for Science and Technology:The Symposium on Composite Materials and Energy Conservation and Emission Reduction, 2013:59-63(in Chinese). [33] CHANG T F, ZHAN L H, TAN W, et al. Void content and interfacial properties of composite laminates under different autoclave cure pressure[J]. Composite Interfaces, 2016, 24(5):529-540. [34] ARATAMA S, HASHIZUME R, TAKENAKA K, et al. Microscopic observation of voids and transverse crack initiation in CFRP laminates[J]. Advanced Composite Materials, 2016, 25(S1):115-130. [35] LIEBIG W V, VIETS C, SCHULTE K, et al. Influence of voids on the compressive failure behaviour of fibre-reinforced composites[J]. Composites Science and Technology, 2015, 117:225-233. |