[1] |
U.S. Department of Transportation, Federal Aviation Administration. Guidance material for aircraft engine life limit parts requirement:Advisory Circular 33.70-1[R]. Washington, D.C.:FAA, 2009:30-50.
|
[2] |
VITTALS S, HAJELA P, JOSHI A. Review of approaches to gas turbine life management:AIAA-2004-4372[R]. Reston,VA:AIAA, 2004.
|
[3] |
BEACHKOFSKI B K, GRANDHI R V. Probabilistic system reliability for a turbine engine airfoil[C]//ASME Turbo Expo 2004:Power for Land, Sea, and Air. New York:ASME, 2004:171-179.
|
[4] |
MELIS M E, ZARETSKY E V,AUGUST R. Probabilistic analysis of aircraft gas turbine disk life and reliability[J]. Journal of Propulsion and Power, 1999, 15(5):658-666.
|
[5] |
GAO H, FEI C, BAI G. Reliability-based low-cycle fatigue damage analysis for turbine blade with thermo-structural interaction[J].Aerospace Science & Technology, 2016, 49:289-300.
|
[6] |
ZHU S P, LIU Q, PENG W, et al. Computational-experimental approaches for fatigue reliability assessment of turbine bladed disks[J]. International Journal of Mechanical Sciences, 2018,142:502-517.
|
[7] |
ZHU S P, LIU Q, ZHOU J. Fatigue reliability assessment of turbine discs under multi-source uncertainties[J]. Fatigue & Fracture of Engineering Materials & Structures, 2018,4:1291-1305.
|
[8] |
HU D Y, MA Q H, SHANG L H,et al. Creep-fatigue behavior of turbine disc of superalloy GH720Li at 650℃ and probabilistic creep-fatigue modeling[J]. Materials Science & Engineering A, 2016,670:17-25.
|
[9] |
WANG R Q, LIU X, HU D Y, et al.Zone-based reliability analysis on fatigue life of GH720Li turbine disk concerning uncertainty quantification[J]. Aerospace Science and Technology, 2017,70:300-309.
|
[10] |
李岩, 张曙光, 宫綦. 一种改进的航空发动机结构概率风险评估方法[J]. 航空学报, 2016, 37(2):597-608. LI Y,ZHANG S G,GONG Q. An improved probabilistic risk assessment method of structural parts for aeroengine[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2):597-608(in Chinese).
|
[11] |
陈志英, 谷裕, 周平, 等. 基于应力应变场强法的轮盘疲劳可靠性分析方法[J]. 推进技术, 2018,39(2):433-439. CHEN Z Y,GU Y,ZHOU P,et al. Fatigue reliability analysis of disk based on stress-strain field intensity method[J]. Journal of Propulsion Technology, 2018,39(2):433-439(in Chinese).
|
[12] |
刘君强, 谢吉伟,左洪福,等.基于随机Wiener过程的航空发动机剩余寿命预测[J].航空学报,2015,36(2):564-574. LIU J Q, XIE J W, ZUO H F, et al. Residual lifetime prediction for aeroengines based on Wiener process with random effects[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2):564-574(in Chinese).
|
[13] |
姚伟,白广忱.基于Fourier正交基神经网络的涡轮盘低循环疲劳可靠性分析[J]. 装备制造技术,2014,(10):132-134. YAO W,BAI G C. Reliability analysis of low cycle fatigue of turbine disk based on fourier orthogonal neural network[J]. Equipment Manufacturing Technology,2014,(10):132-134(in Chinese).
|
[14] |
皮骏, 马圣, 贺嘉诚, 等. 遗传算法优化的SVM在航空发动机磨损故障诊断中的应用[J]. 润滑与密封, 2018, 43(10):95-103. PI J, MA S, HE J C,et al. Application of genetic algorithm optimized SVM in aeroengine wear fault diagnosis[J]. Lubrication Engineering, 2018, 43(10):95-103(in Chinese).
|
[15] |
TOMASSON E, SODER L. Improved importance sampling for reliability evaluation of composite power systems[J]. IEEE Transactions on Power Systems, 2017,32(3):2426-2434.
|
[16] |
LI L, LU Z Z. Interval optimization based line sampling method for fuzzy and random reliability analysis[J]. Journal of Applied Mathematics, 2014,38(13):3124-3135.
|
[17] |
XIONG B, TAN H F. A robust and efficient structural reliability method combining radial-based importance sampling and Kriging[J]. Science China Technological Sciences, 2018,61(5):724-734.
|
[18] |
MELCHERS R E. Search-based importance sampling[J]. Structural Safety,1990, 9:117-128
|
[19] |
AU S K, BECK J L. A new adaptive importance sampling scheme for reliability calculations[J]. Structural Safety, 1999, 21:135-158.
|
[20] |
SANKARAN M, PRAKASB L. Adaptive simulation for system reliability analysis of large structures[J].Computers and Stmctures,2000,77:725-734.
|
[21] |
黄毅,王明政,颜寒,等. 快堆中心柱低周疲劳可靠性评价[J]. 原子能科学技术,2018,52(1):118-125. HUANG Y, WANG M Z, YAN H, et al. Low cycle fatigue reliability evaluation of central column in fast reactor[J]. Atomic Energy Science and Technology, 2018,52(1):118-125(in Chinese).
|
[22] |
陈向前,董聪,闫阳.自适应重要抽样方法的改进算法[J]. 工程力学,2012,29(11):123-128. CHEN X Q, DONG C, YAN Y. Improved adaptive important sampling algorithm[J]. Engineering Mechanics, 2012,29(11):123-128(in Chinese).
|
[23] |
马纪明,詹晓燕,曾声奎.基于自适应重要抽样的可靠性分析方法[J]. 北京航空航天大学学报,2011,37(9):1142-1150. MA J M, ZHAN X Y, ZENG S K. Reliability analysis method based on adaptive importance sampling[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011,37(9):1142-1150(in Chinese).
|
[24] |
戴鸿哲,赵威,王伟.结构可靠性高效自适应重要抽样方法[J].力学学报,2011,4(6):1133-1140. DAI H Z, ZHAO W, WANG W. An efficient adaptive important sampling method for structural reliability analysis[J].Chinese Journal of Theoretical and Applied Mechanics, 2011,4(6):1133-1140(in Chinese).
|
[25] |
U. S. Department of Transportation, Federal Aviation Administration Airworthiness Standards. Aircraft engines:CFR 14 Part 33[S]. Washington, D.C.:FAA,2009:10-30.
|
[26] |
吴学仁.飞机结构金属材料力学性能手册:静强度疲劳-耐久性[M].北京:航空工业出版社, 1997:30-35. WU X R.Handbook of mechanical prosperities of aircraft structural metals:Static strength/durability[M]. Beijing:Aviation Industry Press, 1997:30-35(in Chinese).
|