[1] BRAGG M B, PERKINS W R, SARTER N B, et al. An interdisciplinary approach to inflight aircraft icing safety:AIAA-1998-0095[R]. Reston, VA:AIAA, 1998. [2] BRAGG M B, BASAR T, PERKINS W R, et al. Smart icing systems for aircraft icing safety:AIAA-2002-0813[R]. Reston, VA:AIAA, 2002. [3] SHARMA V, VOULGARIS P G. Aircraft Autopilot analysis and envelope protection for operation under icing conditions[J]. Journal of Guidance, Control and Dynamics, 2004, 27(3):454-465. [4] MERRET J M, HOSSAIN K N, BRAGG M B. Envelope protection and atmospheric disturbances in icing encounters:AIAA-2002-0814[R]. Reston, VA:AIAA, 2002. [5] HOSSAIN K N, SHARMA V, BRAGG M B, et al. Envelope protection and control adaptation in icing encounters:AIAA-2003-0025[R]. Reston, VA:AIAA, 2003. [6] GINGRAS D R, BARNHART B, RANAUDO R, et al. Envelope protection for in-flight ice contamination:AIAA 2009-1458[R]. Reston, VA:AIAA, 2009. [7] GINGRAS D R, BARNHART B, RANAUDO R, et al. Development and implementation of a model-driven envelope protection system for in-flight ice contamination:AIAA-2010-8141[R]. Reston, VA:AIAA, 2010. [8] RANAUDO R, MARTOS B, NORTON B, et al. Piloted simulation to evaluate the utility of a real time envelope protection system for mitigating in-flight icing hazards:AIAA-2010-7987[R]. Reston, VA:AIAA, 2010. [9] MARTOS B, RANAUDO R, NORTON B, et al. Development, implementation, and pilot evaluation of a model-driven envelope protection system to mitigate the hazard of in-flight ice contamination on a twin-engine commuter aircraft:NASA/CR-2014-218320[R]. Washington, D. C.:NASA, 2014. [10] LOMBAERTS T, LOOYE G, CHU P, et al. Pseudo control hedging and its application for safe flight envelope protection[C]//AIAA Guidance, Navigation, and Control Conference. Reston, VA:AIAA, 2010. [11] YAVRUCUK I, PRASAD J V R, UNNIKRISHNAN S. Envelope protection for autonomous unmanned aerial vehicles[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(1):248-261. [12] LOMBAERTS T, LOOYE G, ELLERBROEK J, et al. Design and piloted simulator evaluation of adaptive safe flight envelope protection algorithm[C]//AIAA Guidance, Navigation, and Control Conference. Reston, VA:AIAA, 2016. [13] 张智勇. 结冰飞行动力学特性与包线保护控制律研究[D]. 南京:南京航空航天大学, 2006. ZHANG Z Y. Research on iced aircraft flight dynamics characteristics and envelope protection control law[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2006(in Chinese). [14] 应思斌, 艾剑良. 飞机结冰包线保护对开环飞行性能影响与仿真[J]. 系统仿真学报, 2010, 22(10):2273-2301. YING S B, AI J L. Simulation of aircraft flight envelope protect in icing encounters effects on open loop dynamic[J]. Journal of System Simulation, 2010, 22(10):2273-2301(in Chinese). [15] 应思斌. 飞机容冰飞行控制系统设计的理论与方法研究[D]. 上海:复旦大学, 2010. YING S B. Research on theory and method of aircraft ice-tolerant flight control system design[D]. Shanghai:Fudan University, 2010(in Chinese). [16] 周莉, 徐浩军, 杨哲, 等. 飞机在结冰条件下的最优边界保护方法[J]. 上海交通大学学报, 2013, 47(8):1217-1221. ZHOU L, XU H J, YANG Z, et al. Optimal boundary protection method for aircraft under icing conditions[J]. Journal of Shanghai Jiao Tong University, 2013, 47(8):1217-1221(in Chinese). [17] 屈亮, 李颖晖, 袁国强, 等. 基于相平面法的结冰飞机纵向非线性稳定域分析[J]. 航空学报, 2016, 37(3):865-872. QU L, LI Y H, YUAN G Q, et al. Longitudinal nonlinear stabilizing region for icing aircraft based on phase-plane method[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3):865-872(in Chinese). [18] 郑无计, 李颖晖, 屈亮, 等. 基于正规形法的结冰飞机着陆阶段非线性稳定域[J]. 航空学报, 2017, 38(2):520714. ZHENG W J, LI Y H, QU L, et al. Nonlinear stability region of icing aircraft during landing phase based on normal form method[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2):520714(in Chinese). [19] BRAGG M, HUTCHISON T, MERRET J. Effect of ice accretion on aircraft flight dynamics[C]//38th AIAA Aerospace Sciences Meeting & Exhibit. Reston, VA:AIAA, 2000. [20] SONNEVELDT L. Nonlinear F-16 model description[R]. Delft:Delft University of Technology, 2010. [21] COOK M V. Flight dynamics principles[M]. Burlington, MA:Butterworth-Heinemann, 2007:66-95. [22] 刘世前. 现代飞机飞行动力学与控制[M]. 上海:上海交通大学出版社, 2014:145-150. LIU S Q. Flight dynamics and control of modern aircrafts[M]. Shanghai:Shanghai Jiao Tong University Press, 2014:145-150(in Chinese). [23] HUESCHEN R M. Development of the transport class model(TCM) aircraft simulation from a sub-scale generic transport model(GTM) simulation:NASA/TM-2011-217169[R]. Washington, D. C.:NASA, 2011. [24] HANKE C R, NORDWALL D R. The simulation of a jumbo jet transport aircraft. Volume 2:Modeling data/detail:NASA-CR-114494[R]. Washington, D. C.:NASA, 1970. [25] NAKWAN K. Improved methods in neural network-based adaptive output feedback control, with applications to flight control[D]. Atlanta, GA:Georgia Institute of Technology, 2003. [26] JOHNSON E, KANNAN S. Adaptive flight control for an autonomous unmanned helicopter[C]//AIAA Guidance, Navigation, & Control Conference. Reston, VA:AIAA, 2002. |