[1] FULLER J R. Evolution of airplane gust loads design requirements[J]. Journal of Aircraft, 1995, 32(2):235-246. [2] KHODAPARAST H H, GEORGIOU G, COOPER J E, et al. Rapid prediction of worst case gust loads[J]. Journal of Aeroelasticity and Structural Dynamics, 2012, 2(3):33-54. [3] COOK R, CALDERON D, LOWENBERG M H, et al. Worstcase gust prediction of highly flexible wings[C]//Proceedings of 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, VA:AIAA, 2017:1355-1371. [4] 毕莹, 杨超,吴志刚. 考虑气动力非线性的柔性飞机阵风响应分析[J]. 北京航空航天大学学报, 2015, 41(7):1208-1214. BI Y, YANG C, WU Z G. Gust response analysis of flexible aircraft with aerodynamic nonlinearity[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(7):1208-1214(in Chinese). [5] 杨超, 黄超,吴志刚,等. 气动伺服弹性研究的进展与挑战[J]. 航空学报, 2015, 36(4):1011-1033. YANG C, HUANG C, WU Z G, et al. Progress and challenges for aeroservoelasticity research[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4):1011-1033(in Chinese). [6] KARR C L, ZEILER T A, MEHROTRA R. Determining worst-case gust loads on aircraft structures using an evolutionary algorithm[J]. Applied Intelligence, 2004, 20(2):135-145. [7] KHODAPARAST H H, COOPER J E. Rapid prediction of worst case gust loads following structural modification[J]. AIAA Journal, 2014, 52(2):242-254. [8] CAVAGNA L, RICCI S, RICCOBENE L. Fast-GLP:A fast tool for the prediction of worst case gust loads based on neural networks[C]//Proceedings of 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, VA:AIAA, 2013:1493-1505. [9] CASTELLANI M, LEMMENS Y, COOPER J E. Parametric reduced order model approach for rapid dynamic loads prediction[J]. Aerospace Science and Technology, 2016, 52:29-40. [10] 严德, 杨超,肖志鹏. 弹性飞机平衡的阵风外载荷计算与分析[J]. 北京航空航天大学学报, 2012, 38(10):1321-1325. YAN D, YANG C, XIAO Z P. Balanced external gust loads computation and analysis for elastic aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(10):1321-1325(in Chinese). [11] GIUNTA A, WOJTKIEWICZ S, ELDRED M. Overview of modern design of experiments methods for computational simulations[C]//Proceedings of 41st Aerospace Sciences Meeting and Exhibit. Reston, VA:AIAA, 2003:649. [12] HOSDER S, WATSON L T, GROSSMAN B, et al. Polynomial response surface approximations for the multidisciplinary design optimization of a high speed civil transport[J]. Optimization and Engineering, 2001, 2(4):431-452. [13] SIMPSON T W, MAUERY T M, KORTE J J, et al. Kriging models for global approximation in simulation-based multidisciplinary design optimization[J]. AIAAJournal, 2001, 39(12):2233-2241. [14] MULLUR A A, MESSAC A. Extended radial basis functions:more flexible and effective metamodeling[J]. AIAA Journal, 2005, 43(6):1306-1315. [15] RAI M M, MADAVAN N K. Aerodynamic design using neural networks[J]. AIAA Journal, 2000, 38(1):173-182. [16] CHEN G, ZUO Y T, SUN J, et al. Limitcycle oscillation prediction via support vector machine based reduced order model[C]//Proceedings of 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston, VA:AIAA, 2011:1744. [17] FRIEDMAN J H. Multivariate adaptive regression splines[J]. The Annals of Statistics, 1991,19(1):1-67. [18] REGIS P R, SHOEMAKERC A. A stochastic radial basis function method for the global optimization of expensive functions[J]. Informs Journal on Computing, 2007, 19(4):497-509. |