[1] JAW L, MATTINGLY J D. Aircraft engine controls:design, system analysis, and health monitoring[M]. Reston:AIAA Education Series, 2009:96-117
[2] THOMPSON A, HACKER J, CAO C. Adaptive engine control in the presence of output limits:AIAA-2010-3492[R]. Reston:AIAA, 2010.
[3] 杜宪, 郭迎清, 陈小磊. 基于非线性模型预测控制方法的航空发动机约束管理[J]. 航空动力学报, 2015, 30(6):1766-1770. DU X, GUO Y Q, CHEN X L. Limit management of aircraft engine based on nonlinear model predictive control method[J]. Journal of Aerospace Power, 2015, 30(6):1766-1770(in Chinese).
[4] LITT J S, FREDERICK D K, GUO T H. The case for intelligent propulsion control for fast engine response:AIAA-2009-1876[R]. Reston:AIAA, 2009.
[5] GIBSON N. Intelligent engine systems:NASA/CR-2008-215240[R]. Washington, D.C.:NASA, 2008.
[6] CSANK J T, MAY R D, LITT J S, et al. A sensitivity study of commercial aircraft engine response for emergency situations:NASA/TM-2011-217004[R]. Washington, D.C.:NASA, 2011.
[7] 王旭, 梁钧襄. 有约束的航空发动机加速最优控制[J]. 航空学报, 1992, 13(4):144-150. WANG X, LIANG J X. Study on optimal acceleration control of constrained jet engine based on nonlinear programming[J]. Aata Aeronautica et Astronautica Sinica, 1992, 13(4):144-150(in Chinese).
[8] SPANG H, BROWN H. Control of jet engines[J]. Control Engineering Practice, 1999, 7(9):1043-1059.
[9] MAY R D, CSANK J, LAVELLE T M, et al. A high-fidelity simulation of a generic commercial aircrafts engine and controller:AIAA-2010-6630[R]. Reston:AIAA, 2010.
[10] CSANK J, MAY R D, LITT J S, et al. Control design for a generic commercial aircraft engine:AIAA-2010-6629[R]. Reston:AIAA, 2010.
[11] MAY R D, GARG S. Reducing conservatism in aircraft engine response using conditionally active min-max limit regulators:NASA/TM-2012-217814[R]. Washington, D.C.:NASA, 2012.
[12] RICHTER H. Multiple sliding modes with override logic:limit management in aircraft engine controls[J]. Journal of Guidance, Control, and Dynamics, 2012, 35(4):1132-1142.
[13] RICHTER H, LITT J S. A novel controller for gas turbine engines with aggressive limit management:AIAA-2011-5857[R]. Reston:AIAA, 2011.
[14] RICHTER H. A multi-regulator sliding mode control strategy for output-constrained systems[J]. Automatica, 2011, 47(10):2251-2259.
[15] MAY R, CSANK J, LITT J S, et al. Commercial modular aero-propulsion system simulation 40k (C-MAPSS40k) user's guide:NASA/TM-2010-216831[R]. Washington, D.C.:NASA, 2010.
[16] 吴君凤, 郭迎清. 发动机稳态与过渡态控制集成设计仿真验证[J]. 航空动力学报, 2013, 28(6):1436-1440. WU J F, GUO Y Q. Design and simulation of aero-engine steady-state and transient-state control integration[J]. Journal of Aerospace Power, 2013, 28(6):1436-1440(in Chinese).
[17] DU X, RICHTER H, GUO Y Q. A MIMO sliding mode approach to limit protection in aero-engines DSCC2015-9634[C]//Proceedings of the ASME 2015 Dynamic Systems and Control Conference. New York:ASME, 2015.
[18] RICHTER H. Advanced control of turbofan engines[M]. New York:Springer, 2012:148-169.
[19] EDWARDS C, SPURGEON S. Sliding mode control:theory and application[M]. Washington, D.C:Taylor and Francis, 1998:27-48.
[20] LI R, LI T, BU R. Active disturbance rejection with sliding mode control based course and path following for under actuated ships[J]. Mathematical Problems in Engineering, 2013(1):1-9.
[21] SUN Z, GE S. Switched linear systems:control and design[M]. New York:Springer, 2005:45-62.
[22] BLANCHINI F, CASAGRANDE D, MIANI S. Modal and transition dwell time computation in switching systems:A set-theoretic approach[J]. Automatica, 2010, 46(9):1477-1482. |