[1] 王焕钢,沈毅,王冠珠. 制导航空炸弹变结构控制器设计[J]. 航空学报, 1998, 19(5):3-5 WANG H G, SHEN Y, WANG G Z. Variable structure controller design for guided bomb[J]. Acta Aeronautica et Astronautica Sinica, 1998, 19(5):3-5(in Chinese). [2] GENG X,SHI Z,CHENG K.Experimental investigation of influence of strake wings on self-induced roll motion at high angles of attack[J].Chinese Journal of Aeronautics,2016,29(6):1591-1601. [3] ARROW A, WILLIAMS D E. Comparison of classical and modern missile autopilot design and analysis techniques[J]. Journal of Guidance, Control, and Dynamics, 1989,12(2):220-227. [4] KOVACH M J, STEVENS T R, ARROW A. A bank-to-turn autopilot design for an advanced air-to-air interceptor[C]//Guidance,Navigation and Control Conference, 2013:2579. [5] NESLINE F W, ZARCHAN P. Why modern controllers can go unstable in practice[J]. Journal of Guidance, Control, and Dynamics, 1984,7(4):495-500. [6] WILLIAMS D E, FRIEDLAND B. Modern control theory for design of autopilots for bank-to-turn missiles[J].Journal of Guidance,Control,and Dynamics, 1987,10(4):378-386. [7] 彭博,王伟,王江,等. 滚转导弹解耦过载驾驶仪及其BP自适应调度法[J]. 固体火箭技术, 2017,40(6):785-792. PENG B, WANG W, WANG J, et al. BP adaptive scheduling method of the rolling missile decoupling autopilot[J]. Journal of Solid Rocket Technology, 2017,40(6):785-792(in Chinese). [8] JIN Y C, CHWA D. Adaptive control based on a parametric affine model for tail-controlled missiles[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006,42(2):659-669. [9] REZAZADEH M M, FATHI J M, MOARREFIANPOUR A. Robust roll autopilot design to reduce couplings of a tactical missile[J]. Aerospace Science and Technology, 2016, 51:142-150. [10] SHIMA T, IDAN M, GOLAN O M. Sliding-mode control for integrated missile autopilot guidance[J]. Journal of Guidance, Control, and Dynamics, 2006,29(2):250-260. [11] AWAD A, WANG H. Roll-pitch-yaw autopilot design for nonlinear time-varying missile using partial state observer based global fast terminal sliding mode control[J]. Chinese Journal of Aeronautics,2016,29(5):1302-1312. [12] 王伟,师兴伟,林德福,等. 基于二阶滑模控制理论的新型滚转稳定控制器[J]. 控制与决策, 2019(7):1553-1558. WANG W, SHI X W, LIN D F, et al. Novel roll stabilization controllers based on second-order sliding mode control theory[J]. Control and Desicion, 2019(7):1553-1558(in Chinese). [13] 沈毅,王焕钢,丁兆顺. 激光制导炸弹滚转通道的滑模变结构控制[J]. 兵工学报, 1998, 19(4):372-374. SHEN Y, WANG H G, DING Z S. Variable sructure with sliding mode control for the roll channel of laser guided bombs[J]. Acta Armamentarii, 1998, 19(4):372-374(in Chinese). [14] XU B, SHI Z, SUN F, et al. Barrier lyapunov function based learning control of hypersonic flight vehicle with AOA constraint and actuator Faults[J]. IEEE Transactions on Cybernetics,2018,49(3):1047-1057. [15] HE S, LIN D. Sliding mode based impact angle guidance law considering actuator fault[J]. Optik,2015,126(20):2318-2323 [16] WANG W, XIONG S, WANG S, et al. Three dimensional impact angle constrained integrated guidance and control for missiles with input saturation and actuator failure[J]. Aerospace Science and Technology, 2016,53:169-187. [17] LI T, JIANG Z, YANG H, et al. Reconfigurable fault-tolerant control for supersonic missiles with actuator failures under actuation redundancy[J]. Chinese Journal of Aeronautics, 2020,33(1):324-338. [18] TRIVEDIPK P K, BANDYOPADHYAY B, MAHATA S, et al. Roll stabilization:A higher-order sliding-mode approach[C]//2013 11th IEEE International Conference on Idusrial Informatics (INDIN).Piscataway,NJ:IEEE Press, 2013:420-425. [19] RYNASKI E. Automatic control of aircraft and missiles[J]. IEEE Transactions on Automatic Control, 1966, 11(3):632-633. [20] ROY S, BALDI S, FRIDMAN L M. On adaptive sliding mode control without a priori bounded uncertainty[J]. Automatica, 2020, 111:108650. [21] 韩京清. 自抗扰控制技术:估计补偿不确定因素的控制技术[M]. 北京:国防工业出版社, 2008. HAN J Q. Active disturbance rejection control technique-The technique for estimating and compensating the uncertainties[M]. Beijing:National Defence Industry Press, 2008(in Chinese). |