[1] 路勇, 刘晓光, 周宇, 等. 空间翻滚非合作目标消旋技术发展综述[J]. 航空学报, 2018, 39(1):021302. LU Y, LIU X G, ZHOU Y, et al. Review of detumbling technologies for active removal of uncooperative targets[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1):021302(in Chinese). [2] 周秀华. 单次任务中多块空间碎片主动移除的仿真分析[D]. 北京:中国科学院大学, 2017:3-8. ZHOU X H. The simulation analysis of active debris removal of multiple targets in a single task[D]. Beijing:The University of Chinese Academy of Sciences, 2017:3-8(in Chinese). [3] 耿云海, 卢伟, 陈雪芹. 在轨服务航天器对失控目标的姿态同步控制[J]. 哈尔滨工业大学学报, 2012, 44(1):1-6. GENG Y H, LU W, CHEN X Q. Attitude synchronization control of on-orbit servicing spacecraft with respect to out-of-control target[J]. Journal of Harbin Institute of Technology, 2012, 44(1):1-6(in Chinese). [4] DANESHJOU K, ALIBAKHSHI R. Multibody dynamical modeling for spacecraft docking process with spring-damper buffering device:A new validation approach[J]. Advances in Space Research, 2018, 61(1):497-512. [5] NISHIDA S I, KAWAMOTO S. Strategy for capturing of a tumbling space debris[J]. Acta Astronaut, 2011, 68(1):113-120. [6] HUANG P, WANG M, MENG Z, et al. Reconfigurable spacecraft attitude takeover control in post-capture of target by space manipulators[J]. Journal of the Franklin Institute, 2016, 353(9):1985-2008. [7] HUANG P, WANG M, MENG Z, et al. Adaptive control for space debris removal with uncertain kinematics, dynamics and states[J]. Acta Astronautica, 2016, 128:416-430. [8] MATUNAGA S, KANZAWA T, OHKAMI Y. Rotational motion-damper for the capture of an uncontrolled floating satellite[J]. Control Engineering Practice, 2001, 9(2):199-205. [9] YOSHIKAWA S, YAMADA K. Impulsive control for angular momentum management of tumbling spacecraft[J]. Acta Astronautica, 2007, 60(10-11):810-819. [10] NATARAJAN A, SCHAUB H. Hybrid control of orbit normal and along-track two-craft Coulomb tethers[J]. Aerospace Science and Technology, 2009, 13(4-5):183-191. [11] PERGOLA P, RUGGIERO A, ANDRENUCCI M, et al. Expanding foam application for active space debris removal systems[C]//Proceedings of 62nd International Astronautical Congress IAC11. 2011:6. [12] 林来兴. 空间碎片现状与清理[J]. 航天器工程, 2012, 21(3):1-10. LIN L X. Status and removal of space debris[J]. Spacecraft Engineering, 2012, 21(3):1-10(in Chinese). [13] 徐浩东, 李小将, 李怡勇, 等. 地基激光空间碎片清除技术研究[J]. 装备指挥技术学院学报, 2011, 22(3):71-75. XU H D, LI X J, LI Y Y, et al. Research on technology of space debris removal using ground-based laser[J]. Journal of the Academy of Equipment Command & Technology, 2011, 22(3):71-75(in Chinese). [14] SMITH E S, SEDWICK R J, MERK J F, et al. Assessing the potential of a laser-ablation-propelled tug to remove large space debris[J]. Journal of Spacecraft and Rockets, 2013, 50(6):1268-1276. [15] PHIPPS C R, REILLY J P. ORION:Clearing near-Earth space debris in two years using a 30-kW repetitively-pulsed laser[C]//XI International Symposium on Gas Flow and Chemical Lasers and High-Power Laser Conference. International Society for Optics and Photonics, 1997, 3092:728-732. [16] BONDARENKO S, LYAGUSHIN S, SHIFRIN G. Prospects of using lasers and military space technology for space debris removal[C]//Second European Conference on Space Debris. 1997, 393:703. [17] 童超. 基于模糊趋近律的漂浮基空间机器人的滑模控制研究[D]. 福州:福州大学, 2016:34-43. TONG C. Fast sliding mode control research of free-floating space robot which is based on the fuzzy reaching law[D]. Fuzhou:Fuzhou University, 2016:34-43(in Chinese). [18] 谢立敏, 陈力. 漂浮基柔性关节-柔性臂空间机器人运动非线性滑模控制及双重弹性振动主动抑制[J]. 中国机械工程, 2013, 24(19):2657-2663. XIE L M, CHEN L. Nonlinear sliding mode motion control and double elastic vibration active suppression of free-floating flexible-link space robot[J]. China Mechanical Engineering, 2013, 24(19):2657-2663(in Chinese). [19] KAWAMURA A, ITOH H, SAKAMOTO K. Chattering reduction of disturbance observer based sliding mode control[J]. IEEE Transactions on Industry Applications, 1994, 30(2):456-461. [20] MOBAYEN S, BALEANU D, TCHIER F. Second-order fast terminal sliding mode control design based on LMI for a class of non-linear uncertain systems and its application to chaotic systems[J]. Journal of Vibration and Control, 2017, 23(18):2912-2925. [21] OLIVEIRA T R, CUNHA J P V S, LIU H. Adaptive sliding mode control based on the extended equivalent control concept for disturbances with unknown bounds[M]. 2018:149-163. [22] YANG B, YU T, SU H, et al. Robust sliding-mode control of wind energy conversion systems for optimal power extraction via nonlinear perturbation observers[J]. Applied Energy, 2018, 210:711-723. [23] 张瑞雄. 空间飞网拖曳动力学研究[D]. 哈尔滨:哈尔滨工业大学, 2017:10-17. ZHANG R X. Research on dynamics of the space net dragging system[D]. Harbin:Harbin Institute of Technology, 2017:10-17(in Chinese). [24] 鄂薇, 魏承, 谭春林, 等. 视觉物质点跟踪方法在柔索模型验证中的应用[J]. 航空学报, 2017, 38(12):221334. E W, WEI C, TAN C L, et al. Verification of flexible cable model using visual material point tracking[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(12):221334(in Chinese). |