[1] SI L, WANG Z B, TAN C, et al. A novel approach for coal seam terrain prediction through information fusion of improved D-S evidence theory and neural network[J]. Measurement, 2014, 54:140-151.
[2] YANG L, LEE J. Bayesian belief network-based approach for diagnostics and prognostics of semiconductor manufacturing system[J]. Robotics and Computer-Integrated Manufacturing, 2012, 28(1):66-74.
[3] HE J P, TU Y Y, SHI Y Q. Fusion model of multi monitoring points on dam based on bayes theory[J]. Procedia Engineering, 2011, 15:2133-2138.
[4] BASIR O, YUAN X H. Engine fault diagnosis based on multi-sensor information fusion using Dempster-Shafer evidence theory[J]. Information Fusion, 2007, 8(4):379-386.
[5] MOOSAVIAN A, KHAZAEE M, NAJAFI G, et al. Spark plug fault recognition based on sensor fusion and classifier combination using Dempster-Shafer evidence theory[J]. Applied Acoustics, 2015, 93:120-129.
[6] XU C, ZHANG H, PENG D G, et al. Study of fault diagnosis of integrate of D-S evidence theory based on neural network for turbine[J]. Energy Procedia, 2012, 16:2027-2032.
[7] FAN X F, ZUO M J, Fault diagnosis improved D-S of machines based on D-S evidence theory:Part 2. Application of the improved D-S evidence theory in gearbox fault diagnosis[J]. Pattern Recognition of the Letters, 2006, 27(5):377-385.
[8] 高峰, 唐卓贞. 基于D-S证据理论的船舶电子设备状态预测方法[J]. 船电技术, 2011(2):45-48. GAO F, TANG Z Z. Status prediction algorithm for electronic equipment based on the D-S evidential theory[J]. Marine Electric Technicial, 2011(2):45-48(in Chinese).
[9] 胡金海, 谢寿生, 骆广琦, 等. 基于Dempster-Shafer证据理论的航空发动机磨损状况融合诊断[J]. 机械科学与技术, 2008, 27(3):343-346. HU J H, XIE S S, LUO G Q et al. Fusion diagnosis of aero-engine wearing condition based on Dempster-Shafer proof theory[J]. Mechanical Science and Technology for Aerospace Engineering, 2008, 27(3):343-346(in Chinese).
[10] 杨建平, 黄洪钟, 苗强, 等. 基于证据理论的航空发动机早期故障诊断方法[J]. 航空动力学报, 2008, 23(12):2327-2331. YANG J P, HUANG H Z, MIAO Q, et al. Diagnosis method of aeroengine early fault based on the Dempster-Shafer evidence theory[J]. Journal of Aerospace Power, 2008, 23(12):2327-2331(in Chinese).
[11] FAN X F, ZUO M J. Fault diagnosis of machines based on D-S evidence theory:Part 1. D-S evidence theory and its improvement[J]. Pattern Recognition Letters, 2006, 27(5):366-376.
[12] 胡金海, 余治国, 翟旭升, 等. 基于改进D-S证据理论的航空发动机转子故障决策融合诊断研究[J]. 航空学报, 2014, 35(2):436-443. HU J H, YU Z G, ZHAI X S, et al. Research of decision level fusion diagnosis of aeroengine rotor fault based on improved D-S theory[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2):436-443(in Chinese).
[13] 李军, 锁斌, 李顺. 基于证据理论的多传感器加权融合改进方法[J]. 计算机测量与控制, 2011, 19(10):2592-2595. LI J, SUO B, LI S. Improved multi-sensor weighted fusion method based on evidence theory[J]. Computer Measurement & Control, 2011, 19(10):2592-2595(in Chinese).
[14] 谭青, 向阳辉. 加权证据理论信息融合方法在故障诊断中的应用[J]. 振动与冲击, 2008, 27(4):112-116. TAN Q, XIANG Y H. Application of weighted evidential theory and its information fusion method in fault diagnosis[J]. Journal of Vibration and Shock, 2008, 27(4):112-116(in Chinese).
[15] 梁威, 魏宏飞, 周锋. D-S证据理论中一种冲突证据的融合方法[J]. 计算机工程与应用, 2011, 47(6):144-147. LIANG W, WEI H F, ZHOU F. Fusion method of conflict evidence in D-S theory[J]. Computer Engineering and Applications, 2011, 47(6):144-147(in Chinese).
[16] 王茹. 复杂网络Opinion动力学研究[D]. 武汉:华中师范大学, 2009:39-76. WANG R. Opinion dynamics on the complex networks. Wuhan:Central China Normal University, 2009:39-76(in Chinese).
[17] LIU P Q, WANG X F. Social learning with bounded confidence and heterogeneous agents[J]. Physica A, 2013,392:2368-2374.
[18] 杨文. 多智能体系统一致性问题研究[D]. 上海:上海交通大学, 2009:77-85. YANG W. Consensus problem in multi-agent systems[D]. Shanghai:Shanghai Jiao Tong University, 2009:77-85(in Chinese).
[19] 徐玖平, 陈建中. 群决策理论与方法及实现[M]. 北京:清华大学出版社, 2009:332-347. XU J P, CHEN J Z. The theory and methods of group decision making with its realization[M]. Beijing:Tsinghua University Press, 2009:332-347(in Chinese).
[20] HU J H, REN L T, ZHANG Y, et al.The methods of establishing of aero-engine vibration sensor network sensitive factor based on multi-feature fusion and transformation[C]//The 5th International Symposium on Jet Propulsion and Power Engineering. 2014.
[21] 翟旭升, 胡金海, 谢寿生, 等. 基于DSmT的航空发动机早期振动故障融合诊断方法[J]. 航空动力学报, 2012, 27(2):301-306. ZHAI X S, HU J H, XIE S S, et al. Diagnosis of aero-engine with early vibration fault symptom using DSmT[J]. Journal of Aerospace Power, 2012, 27(2):301-306(in Chinese). |