ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2022, Vol. 43 ›› Issue (9): 626014.doi: 10.7527/S1000-6893.2021.26014
• Special Topic: Operation Safety of Aero-engine • Previous Articles
DUAN Fajie, NIU Guangyue, ZHOU Qi, FU Xiao, JIANG Jiajia
Received:
2021-06-24
Revised:
2021-07-19
Online:
2022-09-15
Published:
2021-09-06
Supported by:
CLC Number:
DUAN Fajie, NIU Guangyue, ZHOU Qi, FU Xiao, JIANG Jiajia. A review of online blade tip clearance measurement technologies for aeroengines[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 626014.
[1] ZHAO H, JIANG Z M, DING H. Tool path planning for profiling grinding of aero-engine blade edge[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(10): 524318 (in Chinese). 赵欢, 姜宗民, 丁汉. 航空发动机叶片叶缘随形磨抛刀路规划[J]. 航空学报, 2021, 42(10): 524318. [2] YANG J J, ZHENG X M, YANG X Y. Load scatter factors affecting aero engine structure life[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(5): 524339 (in Chinese). 杨俊杰, 郑小梅, 杨兴宇. 影响航空发动机结构寿命的载荷分散系数[J]. 航空学报, 2021, 42(5): 524339. [3] ZHAO F T, JING X D, YANG M S, et al. Experimental study of rotor blades vibration and noise in multistage high pressure compressor and their relevance[J]. Chinese Journal of Aeronautics, 2020, 33(3): 870-878. [4] ZHANG S, ZHANG Q B, ZHANG X M. Identification of foreign object impact on aero-engine fan blades with variance analysis[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(5): 524196 (in Chinese). 张帅, 张强波, 张霞妹. 基于方差分析的航空发动机风扇叶片外物撞击识别[J]. 航空学报, 2021, 42(5): 524196. [5] WANG W M, CHEN Z W, ZHANG X L, et al. Fault diagnosis method of rotor rubbing impact based on blade tip timing[J/OL]. Acta Aeronautica et Astronautica Sinica, (2021-02-26)[2021-06-23]. http://kns.cnki.net/kcms/detail/11.1929.v.20210225.1634.032.html. DOI: 10.7527/S1000-6893.2021.25031.(inChinese). 王维民, 陈子文, 张旭龙, 等. 基于叶端定时的转子碰摩故障诊断方法[J/OL]. 航空学报, (2021-02-26)[2021-06-23]. http://kns.cnki.net/kcms/detail/11.1929.v.20210225.1634.032.html. DOI: 10.7527/S1000-6893.2021.25031. [6] BUNKER R S. Axial turbine blade tips: Function, design, and durability[J]. Journal of Propulsion and Power, 2006, 22(2): 271-285. [7] BOOTH T C, DODGE P R, HEPWORTH H K. Rotor-tip leakage: Part Ⅰ—basic methodology[J]. Journal of Engineering for Gas Turbines and Power, 1982, 104(1): 154-161. [8] HUANG C F, HOU M J. Technology for measurement of blade tip clearance in an aeroengine[C]//Proceedings of the 2008 Aeronautical Test Technology Summit, 2008: 35-40, 47 (in Chinese). 黄春峰, 侯敏杰. 航空发动机叶尖间隙测量技术研究[C]//2008年航空试验测试技术峰会论文集, 2008: 35-40, 47. [9] WISEMAN M W, GUO T H. An investigation of life extending control techniques for gas turbine engines[C]//Proceedings of the 2001 American Control Conference. (Cat. No. 01CH37148). Piscataway: IEEE Press, 2001: 3706-3707. [10] HAO J. The investigation about civil aviation engine surge problem: The final solution for PW4000-94"engine group 3 surge[C]//The 13th session of the 15th Annual meeting of China Association for Science and Technology: Proceedings of the Aeroengine Design, Manufacturing and Application Technology Symposium, 2013: 8-12 (in Chinese). 郝杰. 民用航空发动机喘振问题研究: 普惠PW4000-94英寸发动机第三类喘振最终解决措施[C]//第十五届中国科协年会第13分会场: 航空发动机设计、制造与应用技术研讨会论文集, 2013: 8-12. [11] XIE F. Effect of tip clearance on stall and circumferential single grooves improving the stability on axial-flow compressors[D]. Xi'an: Northwestern Polytechnical University, 2015: 3-10 (in Chinese). 谢芳. 轴流压气机叶尖间隙影响失速的机理及周向单槽机匣处理扩稳研究[D]. 西安: 西北工业大学, 2015: 3-10. [12] DANISH S N, QURESHI S R, IMRAN M M, et al. Effect of tip clearance and rotor-stator axial gap on the efficiency of a multistage compressor[J]. Applied Thermal Engineering, 2016, 99: 988-995. [13] FRITH P C. The effect of compressor rotor tip crops on turboshaft engine performance[J]. Journal of Engineering for Gas Turbines and Power, 1994, 116(1): 184-189. [14] GRAF M B, WONG T S, GREITZER E M, et al. Effects of nonaxisymmetric tip clearance on axial compressor performance and stability[J]. Journal of Turbomachinery, 1998, 120(4): 648-661. [15] SHAO H J. Investigation on the turbine blade tip clearance measurement active clearance control and dumping identification[D]. Beijing: Beijing University of Chemical Technology, 2017: 3 (in Chinese). 邵化金. 涡轮叶片叶尖间隙监测、主动控制与阻尼识别方法研究[D]. 北京: 北京化工大学, 2017: 3. [16] WU J, WEN B, ZHANG Q, et al. A novel blade tip clearance measurement method based on event capture technique[J]. Mechanical Systems and Signal Processing, 2020, 139: 106626. [17] SANG Z L. Experimental study on influence of blade tip geometries on the tip clearance flow of compressor cascade[D]. Dalian: Dalian Maritime University, 2017: 12 (in Chinese). 桑则林. 叶尖几何形状对压气机叶栅间隙流场影响的实验研究[D]. 大连: 大连海事大学, 2017: 12. [18] ZHANG J L. Research on blade tip clearance and blade tip-timing measurement based on microwave sense[D]. Tianjin: Tianjin University, 2017: 13 (in Chinese). 张济龙. 基于微波传感的叶尖间隙及叶尖定时测量方法研究[D]. 天津: 天津大学, 2017: 13. [19] YE L Q. Research on transient response of blade tip clearance of high pressure turbine based on temperature and revolution[D]. Guanghan: Civil Aviation Flight University of China, 2020: 2-6 (in Chinese). 叶林青. 基于温度和转速的高压涡轮叶尖间隙瞬态响应研究[D]. 广汉: 中国民用航空飞行学院, 2020: 2-6. [20] LATTIME S, STEINETZ B. Turbine engine clearance control systems: Current practices and future directions[C]//38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2002. [21] XIANG HH, GE N, GAO J, et al. Effect of circumferential non-uniform tip clearance on performance of axial compressor[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(2): 121491 (in Chinese). 向宏辉, 葛宁, 高杰, 等. 周向非均匀叶尖间隙对轴流压气机性能的影响[J]. 航空学报, 2018, 39(2): 121491. [22] ZHENG C, ZHU M C. Application of image measuring technology in blade tip clearance measurement[J]. Journal of Applied Optics, 2014, 35(5): 835-840 (in Chinese). 郑臣, 朱目成. 影像测量技术在叶尖间隙测量中的应用[J]. 应用光学, 2014, 35(5): 835-840. [23] MIL-HDBK-1783B Engine structural integrity program (ENSIP)[S]. Washington, D.C. : Department of Defense, 2004. [24] ZHANG B C. Aeroengine test technologies[M]. Beijing: Beijing University of Aeronautics & Astronautics Press, 2005: 29-32 (in Chinese). 张宝诚. 航空发动机试验和测试技术[M]. 北京: 北京航空航天大学出版社, 2005: 29-32. [25] MA Y Z. The key technique research of blade tip clearance measurement for rotational blades[D]. Tianjin: Tianjin University, 2007: 1-3 (in Chinese). 马玉真. 旋转叶片叶尖间隙测量的关键技术研究[D]. 天津: 天津大学, 2007: 1-3. [26] LIU Y, TAN L, WANG B. A review of tip clearance in propeller, pump and turbine[J]. Energies, 2018, 11(9): 2202. [27] YU B, KE H W, SHEN E Y, et al. A review of blade tip clearance-measuring technologies for gas turbine engines[J]. Measurement and Control, 2020, 53(3-4): 339-357. [28] JIA B H, HE L, FENG Y, et al. The development of aero-engine tip-clearance measurement technology: A simple review[C]//2017 13th IEEE International Conference on Electronic Measurement & Instruments (ICEMI). Piscataway: IEEE Press, 2017: 565-570. [29] CAO S Z. Research on rotating blade tip clearancenoncontacting measurement in the aero-engine[D]. Tianjin: Tianjin University, 2007: 10-11 (in Chinese). 曹素芝. 发动机叶片叶尖间隙非接触检测技术研究[D]. 天津: 天津大学, 2007: 10-11. [30] MASLOVSKIY A, BAKULIN M, SNITKO M. Microwave blade tip clearance measurements: Principles, current practices and future opportunities[C]//Proceedings of ASME Turbo Expo 2012: Turbine Technical Conference and Exposition, 2013: 849-853. [31] DENG C. Research on rotating blade tip clearance signal acquisition & high speed data acquisition & processing technology[D]. Tianjin: Tianjin University, 2018: 13-20 (in Chinese). 邓澈. 旋转叶片叶尖间隙信号获取及高速采集处理技术研究[D]. 天津: 天津大学, 2018: 13-20. [32] DAVIDSON D P, DEROSE R D, WENNERSTROM A J. The measurement of turbomachinery stator-to-drum running clearances[C]//Proceedings of ASME 1983 International Gas Turbine Conference and Exhibit, 2015. [33] SHEARD A G, TURNER S R. Electromechanical measurement of turbomachinery blade tip-to-casing running clearance[C]//Proceedings of ASME 1992 International Gas Turbine and Aeroengine Congress and Exposition, 2015. [34] SHEARD A G, KILLEEN B. A blade-by-blade tip clearance measurement system for gas turbine applications[J]. Journal of Engineering for Gas Turbines and Power, 1995, 117(2): 326-331. [35] WATANABE T, MATSUKI M. Study of tip clearance measurement system[J]. Transactions of the Japan Society of Mechanical Engineers Series C, 1994, 60(574): 2090-2095. [36] WATANABE T. Measurement of tip clearance of all blades and the maximum tip clearance using discharge-type tip clearance measurement system[J]. Transactions of the Japan Society of Mechanical Engineers Series C, 2001, 67(657): 1478-1483. [37] YU B, WANG J Q, SHEN E Y, et al. Blade tip gap measuring system and method based on AC discharging: China, CN106091914B[P]. 2017-12-22 (in Chinese). 于兵, 王继强, 申恩玉, 等. 一种基于交流放电的叶尖间隙测量系统及测量方法: 中国, CN106091914B[P]. 2017-12-22. [38] YU B, ZHANG T, KE H W, et al. Research on the tip clearance measuring method based on AC discharge[J]. IEEE Access, 2020, 8: 60355-60363. [39] AOKI S, TESHIMA K, ARAI M, et al. Results from the phase Ⅱ test using the high-temperature developing unit (HTDU)[J]. Journal of Engineering for Gas Turbines and Power, 1988, 110(2): 251-258. [40] XIONG Y F. Rotor tip-clearance measurement in aeroengine[J]. Measurement & Control Technology, 2004, 23(1): 5-7 (in Chinese). 熊宇飞. 航空发动机转子叶尖间隙测量[J]. 测控技术, 2004, 23(1): 5-7. [41] DHADWAL H S, MEHMUD A, KHAN R, et al. Integrated fiber optic light probe: Measurement of static deflections in rotating turbomachinery[J]. Review of Scientific Instruments, 1996, 67(2): 546-552. [42] MA Y Z, DUAN F J, CAO S Z, et al. Optical fiber sensor for blade tip clearance measurement[J]. Opto-Electronic Engineering, 2005, 32(7): 85-88 (in Chinese). 马玉真, 段发阶, 曹素芝, 等. 叶片叶尖间隙测量的光纤传感器[J]. 光电工程, 2005, 32(7): 85-88. [43] MA Y Z, DUAN F J, WANG Z, et al. Application of optical fiber sensor in tip clearance measurement[J]. Chinese Journal of Sensors and Actuators, 2007, 20(12): 2724-2727 (in Chinese). 马玉真, 段发阶, 王仲, 等. 光纤传感器在叶尖间隙测量中的应用[J]. 传感技术学报, 2007, 20(12): 2724-2727. [44] GARCÍA I, BELOKI J, ZUBIA J, et al. An optical fiber bundle sensor for tip clearance and tip timing measurements in a turbine rig[J]. Sensors, 2013, 13(6): 7385-7398. [45] DURANA G, AMOREBIETA J, FERNANDEZ R, et al. Design, fabrication and testing of a high-sensitive fibre sensor for tip clearance measurements[J]. Sensors, 2018, 18(8): 2610. [46] YANG S D, YANG X, LIU Q R. Analysis of elimination effect of shape factor of reflecting surface by end structure of optical fiber sensor[J]. Measurement & Control Technology, 2020, 39(2): 14-19 (in Chinese). 杨盛德, 杨训, 刘悄然. 光纤传感器端面结构对反射面形状因子的消除作用分析[J]. 测控技术, 2020, 39(2): 14-19. [47] JIA B H, FENG Y, JIA W H. Application of optical sensor with two-circle reflective coaxial fiber in tip clearance measurement[J]. Laser & Optoelectronics Progress, 2015, 52(10): 100603 (in Chinese). 贾丙辉, 冯勇, 贾文华. 双圈同轴式光纤传感器在叶尖间隙测量中的应用[J]. 激光与光电子学进展, 2015, 52(10): 100603. [48] JIA B H, HE L. An optical fiber measurement system for blade tip clearance of engine[J]. International Journal of Aerospace Engineering, 2017, 2017: 1-9. [49] XIE S Y, ZHANG X D, XIONG Y W, et al. Design and modeling of three-dimensional tip clearance optical probe[J]. Chinese Journal of Scientific Instrument, 2018, 39(11): 180-187 (in Chinese). 谢思莹, 张小栋, 熊逸伟, 等. 三维叶尖间隙光纤探头设计及输出特性研究[J]. 仪器仪表学报, 2018, 39(11): 180-187. [50] ZHANG X D, XIONG Y W, XIE S Y, et al. Optical-fiber-based dynamic measurement system for 3D tip clearance of rotating blades[J]. Optics Express, 2019, 27(22): 32075-32095. [51] LIU H C, ZHANG X D, XIONG Y W, et al. Design andanalysis of grouped symmetric optical fiber sensor for demodulating three-dimensional tip clearance[J]. Chinese Journal of Sensors and Actuators, 2020, 33(4): 485-491 (in Chinese). 刘洪成, 张小栋, 熊逸伟, 等. 解调三维叶尖间隙的分组对称光纤传感器设计与分析[J]. 传感技术学报, 2020, 33(4): 485-491. [52] FORD M J, HONEYCATT R E, NORDLUND R E, et al. Advanced optical blade tip clearance measurement system: NASA CR-159402[R]. West Palm Beach: NASA, 1978. [53] BARRANGER J P, FORD M J. Laser-optical blade tip clearance measurement system[J]. Journal of Engineering for Gas Turbines and Power, 1981, 103(2): 457-460. [54] BI S M. Technology for measurement of blade tip clearance in the gas turbine[D]. Harbin: Harbin Engineering University, 2011: 38-42 (in Chinese). 毕思明. 燃气轮机叶尖间隙测量技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2011: 38-42. [55] DHADWAL H S, KURKOV A P. Dual-laser probe measurement of blade-tip clearance[J]. Journal of Turbomachinery, 1999, 121(3): 481-485. [56] YE D C, DUAN F J, OUYANG T, et al. Blade tip clearance measurement using tip timing of multi-beam[J]. Journal of Optoelectronics Laser, 2011, 22(4): 570-573 (in Chinese). 叶德超, 段发阶, 欧阳涛, 等. 基于多光束叶尖定时原理的叶尖间隙测量技术[J]. 光电子·激光, 2011, 22(4): 570-573. [57] WANG K. Rotating blade tip clearance measuring technique using blade tip-timing and dual-frequency laser phase ranging[D]. Tianjin: Tianjin University, 2014: 31-39 (in Chinese). 王凯. 基于叶尖定时和双频激光相位测距的叶尖间隙测量技术[D]. 天津: 天津大学, 2014: 31-39. [58] DUAN F J, ZHANG J L, JIANG J J, et al. Method to improve the blade tip-timing accuracy of fiber bundle sensor under varying tip clearance[J]. Optical Engineering, 2016, 55(1): 014106. [59] DIAMOND D H, HEYNS P S, OBERHOLSTER A J. Constant speed tip deflection determination using the instantaneous phase of blade tip timing data[J]. Mechanical Systems and Signal Processing, 2021, 150: 107151. [60] PFISTER T, BVTTNER L, CZARSKE J. Laser Doppler profile sensor with sub-micrometre position resolution for velocity and absolute radius measurements of rotating objects[J]. Measurement Science and Technology, 2005, 16(3): 627-641. [61] NEUMANN M, DREIER F, GUNTHER P, et al. A laser-optical sensor system for blade vibration detection of high-speed compressors[J]. Mechanical Systems and Signal Processing, 2015, 64-65: 337-346. [62] PFISTER T, BVTTNER L, CZARSKE J, et al. Turbo machine tip clearance and vibration measurements using a fibre optic laser Doppler position sensor[J]. Measurement Science and Technology, 2006, 17(7): 1693-1705. [63] PFISTER T, BVTTNER L, CZARSKE J, et al. Fiber optic laser Doppler distance sensor for in-situ tip clearance and vibration monitoring of turbo machines[C]//Proceedings of the 14th International Symposium on Applications of Laser Techniques to Fluid Mechanics, 2008: 1-6. [64] LIU YY, LI L, HUANG Y F. The use of diffractive elements in Doppler tip clearance detection system[J]. Optical Technique, 2011, 37(3): 381-384 (in Chinese). 刘园园, 李林, 黄一帆. 衍射透镜在多普勒叶尖间隙检测系统中的应用[J]. 光学技术, 2011, 37(3): 381-384. [65] KEMPE A, SCHLAMP S, RÖSGEN T, et al. Low-coherence interferometric tip-clearance probe[J]. Optics Letters, 2003, 28(15): 1323-1325. [66] VAKHTIN A, CHEN S J, MASSICK S. Optical probe for monitoring blade tip clearance[C]//47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2009: 507. [67] YE D C. Tip clearance measurements of rotating blades using dual frequency laser with large frequency difference[D]. Tianjin: Tianjin University, 2012: 13-27 (in Chinese). 叶德超. 基于大频差双频激光的旋转叶片叶尖间隙测量技术[D]. 天津: 天津大学, 2012: 13-27. [68] WANG K, DUAN F J, GUO H T, et al. Blade tip clearance measurement using dual frequency laser with large frequency difference[J]. Journal of Optoelectronics Laser, 2013, 24(10): 1984-1988 (in Chinese). 王凯, 段发阶, 郭浩天, 等. 基于大频差双频激光的发动机叶尖间隙测量技术[J]. 光电子·激光, 2013, 24(10): 1984-1988. [69] GUO H T, DUAN F J, WU G X, et al. Blade tip clearance measurement of the turbine engines based on a multi-mode fiber coupled laser ranging system[J]. Review of Scientific Instruments, 2014, 85(11): 115105. [70] BI C, LI D, FANG J G, et al. Application of chromatic confocal displacement sensor in measurement of tip clearance[C]//Proc SPIE 10155, Optical Measurement Technology and Instrumentation, 2016, 1015: 101551S. [71] Hood Technology. Sensors[EB/OL]. (2010-05-07)[2021-06-23]. https://www.hoodtech.com/bvm/sensors.html. [72] SMARTMENS. Optical fiber sensor[EB/OL]. (2016-09-02)[2021-06-23]. http://www.smartmens.com/product/277384094 (in Chinese). 善测(天津)科技有限公司. 光纤传感器[EB/OL]. (2016-09-02)[2021-06-23]. http://www.smartmens.com/pro-duct/277384094. [73] И. Е. Заблоцкий. Noncontact vibration measurement on turbines rotor blades[M]. WU S X, ZHENG S C, translated. Beijing: National Defense Industry Press, 1986: 75-81 (in Chinese). И. Е. 萨勃洛斯基. 涡轮机叶片振动的非接触测量[M]. 吴士祥郑叔琛, 译. 北京: 国防工业出版社, 1986: 75-81. [74] SARMA G R, BARRANGER J P. Capacitance-type blade-tip clearance measurement system using a dual amplifier with ramp/DC inputs and integration[J]. IEEE Transactions on Instrumentation and Measurement, 1992, 41(5): 674-678. [75] HAASE W C, HAASE Z S. High-Speed, capacitance-based tip clearance sensing[C]//2013 IEEE Aerospace Conference. Big Sky, MT, USA. Piscataway: IEEE Press, 2013: 1-8. [76] SATISH T N, VIVEK A, ANAGHA S N, et al. Novel resistor-capacitor (RC) network-based capacitance signal conditioning circuit for tip clearance measurement on gas turbine engine[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2020, 234(2): 342-360. [77] BARRANGER J P. Low-cost FM oscillator for capacitance type of blade tip clearance measurement system: TP-2746[R]. Cleveland: NASA, 1987. [78] LONG C, DUAN F J, OUYANG T. Application of superheterodyne FM reception in measurement of blade tip clearance[J]. Transducer and Microsystem Technologies, 2009, 28(3): 108-110 (in Chinese). 龙成, 段发阶, 欧阳涛. 超外差调频接收技术在叶尖间隙测量中的应用[J]. 传感器与微系统, 2009, 28(3): 108-110. [79] DUAN F J, YE D C, LONG C. Technique for capacitance-type blade tip clearance measurement based on PLL carrier frequency tracking[J]. Journal of Tianjin University, 2011, 44(4): 283-286 (in Chinese). 段发阶, 叶德超, 龙成. 基于PLL载频跟踪的电容式叶尖间隙测量技术[J]. 天津大学学报, 2011, 44(4): 283-286. [80] ADDABBO T, FORT A, MUGNAINI M, et al. A system for the dynamic response characterization of turbomachinery tip clearance measurement instruments based on capacitive probes[C]//2015 IEEE Sensors Applications Symposium (SAS). Piscataway: IEEE Press, 2015: 1-5. [81] CHIVERS J. A technique for the measurement of blade tip clearance in a gas turbine[C]//25th Joint Propulsion Conference. Reston: AIAA, 1989. [82] MU¨LLER D, SHEARD A G, MOZUMDAR S, et al. Capacitive measurement of compressor and turbine blade tip to casing running clearance[J]. Journal of Engineering for Gas Turbines and Power, 1997, 119(4): 877-884. [83] SHEARD A G. Blade by blade tip clearance measurement[J]. International Journal of Rotating Machinery, 2011, 2011: 1-13. [84] ROTADATA. Capacitance probes overview[EB/OL]. (2021-06-23)[2021-06-23]. https://www.rotadata.com/Blade_Tip_Clearance_Capacitance_Probes. [85] LAWSON C P, IVEY P C. Tubomachinery blade vibration amplitude measurement through tip timing with capacitance tip clearance probes[J]. Sensors and Actuators A: Physical, 2005, 118(1): 14-24. [86] BARRANGER J. An in-place recalibration technique to extend the temperature capability of capacitance-sensing, rotor-blade-tip-clearance measurement systems[C]//SAE Technical Paper Series. 400 Commonwealth Drive. Warrendale: SAE International, 1978: 781003. [87] FOGALE TURBO. Capablade fusion with MC925[EB/OL]. (2021-06-23)[2021-06-23]. http://www.fogale.fr/turbomachinery/index.php. [88] SMARTMENS. BCMS[EB/OL]. (2016-09-02)[2021-06-23]. http://www.smartmens.com/product/277384485 (in Chinese). 善测(天津)科技有限公司. 叶尖间隙测量系统[EB/OL]. (2016-09-02)[2021-06-23]. http://www.smartmens.com/product/277384485. [89] ZHANG X, DUAN F J, YE D C, et al. Tip clearance signal processing method for rotary blade based on RMS[J]. Automation & Instrumentation, 2019, 34(11): 42-46 (in Chinese). 张鑫, 段发阶, 叶德超, 等. 基于RMS的旋转叶片叶尖间隙信号处理方法[J]. 自动化与仪表, 2019, 34(11): 42-46. [90] SHAO X C, DUAN F J, JIANG J J, et al. Denoising method of blade tip clearance signal based on adaptive moving average and wavelet threshold[J]. Chinese Journal of Sensors and Actuators, 2021, 34(1): 34-40 (in Chinese). 邵兴臣, 段发阶, 蒋佳佳, 等. 基于自适应滑动均值和小波阈值的叶尖间隙信号降噪方法[J]. 传感技术学报, 2021, 34(1): 34-40. [91] LI J, GUO G H, DUAN F J, et al. A novel self-adaptive, multi-peak detection algorithm for blade tip clearance measurement based on a capacitive probe[J]. Measurement Science and Technology, 2021, 32(8): 085006. [92] RICKMAN J. Eddy current turbocharger blade speed detection[J]. IEEE Transactions on Magnetics, 1982, 18(5): 1014-1021. [93] ROESELER C, VON FLOTOW A, TAPPERT P. Monitoring blade passage in turbomachinery through the engine case (no holes)[C]//Proceedings, IEEE Aerospace Conference. Piscataway: IEEE Press, 2002: 6. [94] HAASE W C, HAASE Z S. Advances in through-the-case eddy current sensors[C]//2013 IEEE Aerospace Conference. Piscataway: IEEE Press, 2013: 1-5. [95] TOMASSINI R, ROSSI G, BROUCKAERT J F. Blade tip clearance and blade vibration measurements using a magnetoresistive sensor[C]//Proceedings of the 11th European Conference on Turbomachinery Fluid dynamics & Thermodynamics, 2015: 256. [96] TOMASSINI R. Blade tip timing and blade tip clearance measurement system based on magnetoresistive Sensors[D]. Padova: Università degli Studi di Padova, 2016: 83-90. [97] TOMASSINI R, ROSSI G, BROUCKAERT J F. On the development of a magnetoresistive sensor for blade tip timing and blade tip clearance measurement systems[J]. Review of Scientific Instruments, 2016, 87(10): 102505. [98] DUAN F J, HUANG T T, JIANG J J, et al. High-speed vortex sensor: China, CN107121153A[P]. 2017-09-01 (in Chinese). 段发阶, 黄婷婷, 蒋佳佳, 等. 高速电涡流传感器: 中国, CN107121153A[P]. 2017-09-01. [99] SUTCLIFFE H. Principles of eddy-current distance gauges[J]. Proceedings of the Institution of Electrical Engineers, 1977, 124(5): 479. [100] WANG W M, SHANG W, YAO J F, et al. A blade tip-timing measurement study basedon eddy current technology[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2014, 41(3): 102-107 (in Chinese). 王维民, 尚文, 姚剑飞, 等. 基于电涡流技术的叶尖间隙及定时测量研究[J]. 北京化工大学学报(自然科学版), 2014, 41(3): 102-107. [101] WANG W M, SHAO H J, CHEN L F, et al. Investigation on the turbine blade tip clearance monitoring based on eddy current pulse-trigger method[C]//Proceedings of ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, 2016. [102] WANG W M, SHAO H J, CHEN L F, et al. Investigation on the blade tip clearance monitoring of turbomachinery based on the pulse-trigger method[J]. Journal of Vibration, Measurement & Diagnosis, 2017, 37(3): 583-587, 634 (in Chinese). 王维民, 邵化金, 陈立芳, 等. 基于触发脉冲的涡轮机械叶尖间隙监测方法[J]. 振动测试与诊断, 2017, 37(3): 583-587, 634. [103] SMARTMENS. Condition Monitoring and Health Management of Rotating Machinery[EB/OL]. (2016-09-02)[2021-06-23]. http://www.smartmens.com/xzjxztjchjkgl (in Chinese). 善测(天津)科技有限公司. 旋转机械状态监测和健康管理[EB/OL]. (2016-09-02)[2021-06-23]. http://www.smartmens.com/xzjxztjchjkgl. [104] CHANA K S, CARDWELL M T, SULLIVAN J S. The development of a hot section eddy current sensor for turbine tip clearance measurement[C]//Proceedings of ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. 2013. [105] SRIDHAR V, CHANA K S. Tip-clearance measurements on an engine high pressure turbine using an eddy current sensor[C]//Proceedings of ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, 2017. [106] DU L, ZHU X L, ZHE J. A high sensitivity inductive sensor for blade tip clearance measurement[J]. Smart Materials and Structures, 2014, 23(6): 065018. [107] HAN Y, ZHONG C, ZHU X L, et al. Online monitoring of dynamic tip clearance of turbine blades in high temperature environments[J]. Measurement Science and Technology, 2018, 29(4): 045102. [108] ZHAO Z Y, LIU Z X, LYU Y G, et al. Experimental investigation of high temperature-resistant inductive sensor for blade tip clearance measurement[J]. Sensors, 2018, 19(1): 61. [109] ZHAO Z Y, LIU Z X, LV Y G, et al. Design and verification of high resolution eddy current sensor for blade tip clearance measurement[J]. Chinese Journal of Scientific Instrument, 2018, 39(6): 132-139 (in Chinese). 赵梓妤, 刘振侠, 吕亚国, 等. 高分辨率转子叶尖间隙测量传感器的设计及验证[J]. 仪器仪表学报, 2018, 39(6): 132-139. [110] LIU Z X, ZHAO Z Y, LYU Y G, et al. Experimental investigation of inductive sensor characteristic for blade tip clearance measurement at high temperature[J]. Sensors, 2019, 19(17): 3694. [111] BOROVIK S Y, PODLIPNOV P E, SEKISOV Y N, et al. Influence of disturbing factors in a system for measuring radial clearances in gas-turbine engines with temperature self-compensation[J]. Optoelectronics, Instrumentation and Data Processing, 2019, 55(4): 388-398. [112] CHANA K S. Eddy current sensors: US 20100171491[P]. 2010-07-08. [113] JIAO D, NI L W, ZHU X L, et al. Measuring gaps using planar inductive sensors based on calculating mutual inductance[J]. Sensors and Actuators A: Physical, 2019, 295: 59-69. [114] WU J, WEN B, ZHOU Y, et al. Eddy current sensor system for blade tip clearance measurement based on a speed adjustment model[J]. Sensors, 2019, 19(4): 761. [115] MANDACHE C, MCELHINNEY T, MRAD N. Aircraft engine blade tip monitoring using pulsed eddy current technology[C]//Proceedings of the 4th International Symposium on NDT in Aerospace, 2012: 1-9. [116] GRZYBOWSKI R, FOYT G, KNOELL H, et al. Microwave blade tip clearance measurement system[C]//Proceedings of ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition, 2015. [117] WENGER J, NOWECK M, STOTZ M, et al. An MMIC-based microwave sensor for accurate clearance measurements in aircraft engines[C]//1997 27th European Microwave Conference. Piscataway: IEEE Press, 1997: 1122-1126. [118] ASLINEZHAD M, A HEJAZI M. Turbine blade tip clearance determination using microwave measurement and k-nearest neighbour classifier[J]. Measurement, 2020, 151: 107142. [119] ZHANG T, REN L, JU X Y, et al. Design of sensor for measuring turbine engine blade tip clearance[C]//2017 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC). Piscataway: IEEE Press, 2017: 1-5. [120] LU X, TAN Q L. A new type of microwave blade tip clearance sensor[J]. Micronanoelectronic Technology, 2020, 57(1): 49-53, 65 (in Chinese). 路晓, 谭秋林. 一种新型微波叶尖间隙传感器[J]. 微纳电子技术, 2020, 57(1): 49-53, 65. [121] WAGNER M, SCHULZE A, VOSSICK M, et al. Novel microwave vibration monitoring system for industrial power generating turbines[C]//1998 IEEE MTT-S International Microwave Symposium Digest (Cat. No. 98 CH36-192). Piscataway: IEEE Press, 1998: 1211-1214. [122] VIOLETTI M, SKRIVERVIK A K, XU Q, et al. New microwave sensing system for blade tip clearance measurement in gas turbines[C]//Sensors, 2012 IEEE. Piscataway: IEEE Press, 2012: 1-4. [123] NASA. New sensor gaining interest on industry radar screen[EB/OL]. (2003-01-01)[2021-06-23]. http://spinoff.nasa.gov/spinoff2003/ip_10.html. [124] ZHANG J L, DUAN F J, NIU G Y, et al. A blade tip timing method based on a microwave sensor[J]. Sensors, 2017, 17(5): 1097. [125] ZHANG J L, DUAN F J, NIU G Y. Blade tip clearance and blade tip timing measurement based on microwave sensors[J]. Control Engineering of China, 2019, 26(7): 1233-1238 (in Chinese). 张济龙, 段发阶, 牛广越. 基于微波传感器的叶尖间隙与叶尖定时测量[J]. 控制工程, 2019, 26(7): 1233-1238. [126] PERZ M, PRZYSOWA R, DZIECIOL E. Turbojet engine blades health/maintenance monitoring using a microwave probe[C]//2006 International Conference on Microwaves, Radar & Wireless Communications. Piscataway: IEEE Press, 2006: 255-258. [127] ROKICKI E, WERYN'SKI P, SZCZEPANIK R. Differential antenna: Poland, P391806[P]. 2008-09-01 (in Polish). [128] SCHICHT A, HUBER K, ZIROFF A, et al. Absolute phase-based distance measurement for industrial monitoring systems[J]. IEEE Sensors Journal, 2009, 9(9): 1007-1013. [129] XIE X J, WU Y H, ZHU Z Y. Design and calculation of microwave sensor for tip clearance measurement on aircraft engine[J]. Transducer and Microsystem Technologies, 2015, 34(5): 63-65 (in Chinese). 谢兴娟, 吴娅辉, 朱振宇. 航空发动机叶尖间隙测试微波传感器设计与计算[J]. 传感器与微系统, 2015, 34(5): 63-65. [130] XIE X J, WU Y H. Analysis and simulation of microwave iip clearance measurement sensor[J]. Metrology & Measurement Technology, 2016, 36(6): 47-50 (in Chinese). 谢兴娟, 吴娅辉. 微波叶尖间隙测量传感器的计算分析[J]. 计测技术, 2016, 36(6): 47-50. [131] ZHA X S, WU Y H. Design of digital down converter in microwave measurement system of tip clearance[J]. Radio Communications Technology, 2017, 43(6): 71-76 (in Chinese). 查祥胜, 吴娅辉. 叶尖间隙微波测量系统中数字下变频设计[J]. 无线电通信技术, 2017, 43(6): 71-76. [132] PAN Y J. A pulse radar front-end research for tip clearance measurement[D]. Chengdu: University of Electronic Science and Technology of China, 2017: 26-54 (in Chinese). 潘跃静. 叶尖间隙微波测量系统前端研究[D]. 成都: 电子科技大学, 2017: 26-54. [133] ZHAI D Y, XIE M, YUAN J D, et al. Application of high level synthesis in the blade tip clearance measurement system[C]//2018 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). Piscataway: IEEE Press, 2018: 1-5. [134] MASLOVSKIY A. Microwave turbine tip clearance measuring system for gas turbine engines[C]//Proceedings of ASME Turbo Expo 2008: Power for Land, Sea, and Air, 2009: 105-114. [135] SCHICHT A, SCHWARZER S, SCHMIDT L P. Tip clearance measurement technique for stationary gas turbines using an autofocusing millimeter-wave synthetic aperture radar[J]. IEEE Transactions on Instrumentation and Measurement, 2012, 61(6): 1778-1785. [136] NIU G Y, DUAN F J, ZHOU Q, et al. A dynamic measurement method of blade tip clearance by microwave phase difference ranging[J/OL]. Acta Aeronautica et Astronautica Sinica, (2021-04-06)[2021-06-23]. http://kns.cnki.net/kcms/detail/11.1929.V.20210429.1424.044.html. DOI: 10.7527/S10-00-6893.2021.25396.(inChinese). 牛广越, 段发阶, 周琦, 等. 基于微波相位差测距的叶尖间隙动态测量方法[J/OL]. 航空学报, (2021-04-06)[2021-06-23]. http://kns.cnki.net/kcms/detail/11.1929.V.20210429.1424.044.html. DOI: 10.7527/S10-00-6893.2021.25396. [137] HOLST T A. Analysis of spatial filtering in phase-based microwave measurements of turbine blade tips[D]. Atlanta: Georgia Institute of Technology, 2005: 34-45. [138] KWAPISZ D, HAFNER M, QUELOZ S. Calibration and characterization of a CW radar for blade tip clearance measurement[C]//The 7th European Radar Conference. Piscataway: IEEE Press, 2010: 320-323. [139] YANG J S, XU G L, DONG W D, et al. Study on the signal calibration of microwave blade tip clearance sensor[J]. Chinese Journal of Scientific Instrument, 2018, 39(10): 193-201 (in Chinese). 杨季三, 徐贵力, 董文德, 等. 微波叶尖间隙传感器信号校准研究[J]. 仪器仪表学报, 2018, 39(10): 193-201. [140] HOLMQUIST E B, JALBERT P L. Turbine blade tip clearance measurement instrumentation[C]//Proceedings of ASME Turbo Expo 2007: Power for Land, Sea, and Air, Montreal, 2009: 605-611. [141] GEISHEIMER J, HOLST T. Novel sensors to enable closed-loop active clearance control in gas turbine engines[C]//SPIE Defense+Security. Proc SPIE 9083, Micro-and Nanotechnology Sensors, Systems, and Applications VI, 2014, 9083: 908310. [142] ABDUL-AZIZ A, WOIKE M R, ANDERSON R C, et al. Propulsion health monitoring assessed by microwave sensor performance and blade tip timing[C]//Smart Structures and NDE for Energy Systems and Industry 4.0, 2019: 109730Q. [143] STEINER A. Techniques for blade tip clearance measurements with capacitive probes[J]. Measurement S |
[1] | Guoning QI, Baohai WU, Jiangfeng FU. Comparative analysis on relief grooves of high-speed and high-pressure aeroengine fuel gear pumps [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529666-529666. |
[2] | Zhongzhi LI, Jinyi MA, Jianliang AI, Yiqun DONG. Fault detection and classification of aerospace sensors using deep neural networks finetuned from VGG16 [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S1): 727615-727615. |
[3] | NIU Guangyue, DUAN Fajie, ZHOU Qi, LIU Zhibo. A dynamic measurement method of blade tip clearance based on microwave phase difference ranging [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 625396-625396. |
[4] | WANG Houbing, WEI Jingchao, CHENG Li'nan, LI Xinxiang, ZHAO Rong. Force sensor for axial force and shear force of bolts in joints [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(3): 424459-424459. |
[5] | CHENG Yuehua, JIANG Wenjian, YANG Hao, XUE Qi, LIAO He. Fault identification of actuators and sensors of satellite attitude control systems based on deep forest algorithm [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(S1): 723778-723778. |
[6] | ZHENG Yong, LIU Xinjiang, LI Chonghui. Necessity and technical characteristics of developing single-soldier star sensor navigation equipment [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(8): 623693-623693. |
[7] | ZHANG Hui, ZHOU Xiangdong, WANG Xinmei, TIAN Hong. Survey of technology status and development of all-time star sensors in near-earth space [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(8): 623719-623719. |
[8] | CUI Yunxian, GAO Fulai, ZHU Xi, SU Xinming, YIN Junwei. Thin film temperature sensor for spacecraft: development and performance [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(12): 424097-424097. |
[9] | YU Huiyong, LI Huafeng, ZENG Jie, XU Zhiwei, HUANG Jiwei, ZHAO Qidi. Monitoring technique for shape reconstruction of variable camber trailing edge based on optical fiber sensors [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(10): 223808-223808. |
[10] | FENG Xiaoxue, LI Shuhui, PAN Feng. Dual unknown interference decoupled multi-sensors bias compensation and state estimate [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(7): 322845-322845. |
[11] | LI Juan, JING Bo, QIANG Xiaoqing, LIU Xiaodong. Fault states feature extraction and experimental study for airborne fuel pumps based on sample quantile [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016, 37(9): 2851-2863. |
[12] | YANG Xiaodong, HOU Anping, LI Manlu, NI Qifeng. Influence of blade tip clearance on blade aerodynamic damping in transonic compressor [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015, 36(6): 1885-1895. |
[13] | TIAN Yugang, YANG Gui, WU Wei. A strict geometric calibration method for airborne hyperspectral sensors aided by high resolution images [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015, 36(4): 1250-1258. |
[14] | JIN Chaowu, XU Longxiang, ZHU Yili. Research on Displacement Sensor of High Temperature Active Magnetic Bearing [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014, 35(1): 230-239. |
[15] | KONG Ruonan, CHENG Yongmei, LIANG Yan, WANG Zengfu, SUI Zhijia. Mode Identification and Location Improvement Based on Data Association of OTHR and Azimuth-only Sensors [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2012, (6): 1061-1069. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341