[1] RANDALL R B, ANTONI J. Rolling element bearing diagnostics-A tutorial[J].Mechanical Systems and Signal Processing, 2011, 25(2):485-520. [2] WIGGINS R A. Minimum entropy deconvolution[J].Geoexploration, 1978, 16(1-2):21-35. [3] SAWALHI N, RANDALL R B, ENDO H. The enhancement of fault detection and diagnosis in rolling element bearings using minimum entropy deconvolution combined with spectral kurtosis[J].Mechanical Systems and Signal Processing, 2007, 21(6):2616-2633. [4] 王宏超, 陈进, 董广明. 基于最小熵解卷积与稀疏分解的滚动轴承微弱故障特征提取[J].机械工程学报, 2013, 49(1):88-94. WANG H C, CHEN J, DONG G M. Fault diagnosis method for rolling bearing's weak fault based on minimum entropy deconvolution and sparse decomposition[J].Journal of Mechanical Engineering, 2013, 49(1):88-94(in Chinese). [5] 陈海周, 王家序, 汤宝平, 等. 基于最小熵解卷积和Teager能量算子直升机滚动轴承复合故障诊断研究[J].振动与冲击, 2017, 36(9):45-50, 73. CHEN H Z, WANG J X, TANG B P, et al. Helicopter rolling bearing hybrid faults diagnosis using minimum entropy deconvolution and Teager energy operator[J].Journal of Vibration and Shock, 2017, 36(9):45-50, 73(in Chinese). [6] 林桐, 陈果, 滕春禹, 等. 基于机匣振动信号的滚动轴承故障协同诊断技术[J].航空动力学报, 2018, 33(10):2376-2384. LIN T, CHEN G, TENG C Y, et al. Rolling bearing collaborative fault diagnosis technology for casing vibration signal[J].Journal of Aerospace Power, 2018, 33(10):2376-2384(in Chinese). [7] 姚成玉, 来博文, 陈东宁, 等. 基于最小熵解卷积-变分模态分解和优化支持向量机的滚动轴承故障诊断方法[J].中国机械工程, 2017, 28(24):3001-3012. YAO C Y, LAI B W, CHEN D N, et al. Fault diagnosis method based on MED-VMD and optimized SVM for rolling bearings[J].China Mechanical Engineering, 2017, 28(24):3001-3012(in Chinese). [8] 崔伟成, 张征. 基于局部特征尺度分解与最小熵解卷积的轴承故障诊断[J].轴承, 2018(5):51-55. CUI W C, ZHANG Z. Fault diagnosis for bearings based on LCD-MED[J].Bearing, 2018(5):51-55(in Chinese). [9] 郭家宇, 熊炘, 刘浩. 基于VMD和MED的滚动轴承故障诊断方法[J].轴承, 2018(6):50-54. GUO J Y, XIONG X, LIU H. Fault diagnosis method for rolling bearings based on VMD and MED[J].Bearing, 2018(6):50-54(in Chinese). [10] BSRSZCZ T, SAWALHI N. Fault detection enhancement in rolling element bearings using the minimum entropy deconvolution[J].Archives of Acoustics, 2012, 37(2):131-141. [11] CHENG Y, ZHOU N, ZHANG W H, et al. Application of an improved minimum entropy deconvolution method for railway rolling element bearing fault diagnosis[J].Journal of Sound and Vibration, 2018, 425:53-69. [12] MIAO Y H, ZHAO M, LIN J, et al. Application of an improved maximum correlated kurtosis deconvolution method for fault diagnosis of rolling element bearings[J].Mechanical Systems and Signal Processing, 2017, 92:173-195. [13] ABBOUD D, ELBADAOUI M, SMITH W A, et al. Advanced bearing diagnostics:A comparative study of two powerful approaches[J].Mechanical Systems and Signal Processing, 2019, 114:604-627. [14] CHENG Y, WANG Z W, ZHANG W H, et al. Particle swarm optimization algorithm to solve the deconvolution problem for rolling element bearing fault diagnosis[J].ISA Transactions, 2019, 90:244-267. [15] JIANG X X, XU C, SHI J J, et al. A new l0-norm embedded MED method for roller element bearing fault diagnosis at early stage of damage[J].Measurement, 2018, 127:414-424. [16] ZHANG L, HU N Q. Fault diagnosis of sun gear based on continuous vibration separation and minimum entropy deconvolution[J].Measurement, 2019, 141:332-344. [17] WANG S H, XIANG J W, TANG H S, et al. Minimum entropy deconvolution based on simulation-determined band pass filter to detect faults in axial piston pump bearings[J].ISA Transactions, 2019, 88:186-198. [18] QIU H, LEE J, LIN J, et al. Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics[J].Journal of Sound and Vibration, 2006, 289(4-5):1066-1090. [19] MCDONALD G L, ZHAO Q, ZUO M J. Maximum correlated Kurtosis deconvolution and application on gear tooth chip fault detection[J].Mechanical Systems and Signal Processing, 2012, 33:237-255. [20] 宿磊, 黄海润, 李可, 等. 基于LCD-MCKD的滚动轴承故障特征提取方法[J].华中科技大学学报(自然科学版), 2019, 47(9):19-24. SU L, HUANG H R, LI K, et al. Feature extraction of fault rolling bearings based on LCD-MCKD[J].Journal of Huazhong University of Science and Technology (Natural Science Edition), 2019, 47(9):19-24(in Chinese). [21] 李政, 张炜, 明安波, 等. 基于IEWT和MCKD的滚动轴承故障诊断方法[J]. 机械工程学报,2019,55(23):136-146. LI Z, ZHANG W, MING A B, et al. A novel fault diagnosis method based on Improved Empirical Wavelet Trans-form and Maximum Correlated Kurtosis Deconvolution for rolling element bearing[J]. Journal of Mechanical Engineering, 2019,55(23):136-146(in Chinese). |