[1] 王聪梅. 机匣制造技术[M]. 北京:科学出版社, 2002. WANG C M. Machining technology of casing[M]. Beijing:Science Press, 2002(in Chinese). [2] 盛文娟, 徐斌. 航空发动机机匣电解加工工艺试验[J]. 电加工与模具, 2010(2):52-55. SHENG W J, XU B. Technological test of electrolytic machining of aero-engine casing[J]. Electromachining & Mould, 2010(2):52-55(in Chinese). [3] LIU X, KANG X, ZHAO W, et al. Electrode feeding path searching for 5-axis EDM of integral shrouded blisks[C]//The Seventeeth CIRP Conference on Electro Physical and Chemical Machining (ISEM). 2013:107-111. [4] 崔海军, 张明岐, 程小元. 民机机匣电解加工设备的研制[J]. 电加工与模具, 2016(z1):60-62. CUI H J, ZHANG M Q, CHENG X Y. Development of the ECM machine for civil aeroengine casing[J]. Electromachining & Mould, 2016(z1):60-62(in Chinese). [5] 任军学, 田卫军, 姚倡锋, 等. 航空发动机机匣数控加工关键技术研究[J]. 航空制造技术, 2016(5):73-77. REN J X, TIAN W J, YAO C F, et al. Research on key technology of aeroengine casing CNC machining[J]. Aeronautical Manufacturing Technology, 2016(5):73-77(in Chinese). [6] 任军学, 龚仔华, 田荣鑫, 等. 航空发动机机匣五轴插铣加工[J]. 航空制造技术, 2013(9):58-61. REN J X, GONG Z H, TIAN R X, et al. 5-axis plunge milling of aeroengine case[J]. Aeronautical Manufacturing Technology, 2013(9):58-61(in Chinese). [7] HIRANO C, MORISHIGE K. Development of rough cutting method with plunge milling using 5-axis control machine tool[J]. Journal of the Japan Society for Precision Engineering, 2007, 73(11):1261-1266. [8] 周续, 张定华, 吴宝海, 等. 材料切除对机匣铣削动力学与稳定性的影响[J]. 航空学报, 2016, 37(4):1352-1362. ZHOU X, ZHANG D H, WU B H, et al. Dynamics and stability analysis in end milling of aero-engine casing considering material removal effect[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(4):1352-1362(in Chinese). [9] PATIL P, POLISHETTY A, GOLDBERG M, et al. Slot machining of TI6AL4V with trochoidal milling technique[J]. Journal of Machine Engineering, 2014, 14(4):42-54. [10] ELBER G, COHEN E, DRAKE S. MATHSM:Medial axis transform toward high speed machining of pockets[J]. Computer-Aided Design, 2005, 37(2):241-250. [11] XIONG Z H, ZHUANG C G, DING H. Curvilinear tool path generation for pocket machining[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2011, 225(4):483-495. [12] IBARAKI S, YAMAJI I, MATSUBARA A. On the removal of critical cutting regions by trochoidal grooving[J]. Precision Engineering, 2010, 34(3):467-473. [13] RAUCH M. Rough pocket milling with trochoidal and plunging strategies[J]. International Journal of Machining & Machinability of Materials, 2007, 2(2):161-175. [14] RAUCH M, DUC E, HASCOET J Y. Improving trochoidal tool paths generation and implementation using process constraints modelling[J]. International Journal of Machine Tools & Manufacture, 2009, 49(5):375-383. [15] FERREIRA J C, OCHOA D M. A method for generating trochoidal tool paths for 21/2 D pocket milling;process planning with multiple tools[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2013, 227(9):1287-1298. [16] DIEHL A, PATTERSON R B. Method of milling an interior region:US8560113[P]. 2013. [17] SONA G. Automatic method for milling complex channel-shaped cavities:US9423788[P]. 2016. [18] OTKUR M, LAZOGLU I. Trochoidal milling[J]. International Journal of Machine Tools & Manufacture, 2007, 47(9):1324-1332. [19] SZALÓKI I, CSUKA S, SIPOS S. New test results in cycloid-forming trochoidal milling[J]. Acta Polytechnica Hungarica, 2014, 11(2):215-228. [20] KARDES N, ALTINTAS Y. Mechanics and dynamics of the circular milling process[J]. Journal of Manufacturing Science & Engineering, 2007, 129(1):21-31. [21] KLOCKE F, BERGS T, BUSCH M, et al. Integrated approach for a knowledge-based process layout for simultaneous 5-axis milling of advanced materials[J]. Advances in Tribology, 2011, 2011:108-115. |