ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2014, Vol. 35 ›› Issue (2): 320-331.doi: 10.7527/S1000-6893.2013.0435
• Review • Previous Articles Next Articles
GUO Jianguo, ZHOU Jun
Received:
2013-09-03
Revised:
2013-10-17
Online:
2014-02-25
Published:
2013-10-30
Supported by:
Aerospace Science and Technology Innovation Fund (N13XW0001)
CLC Number:
GUO Jianguo, ZHOU Jun. Review of the Control of Low Dynamic Vehicles in Near Space[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014, 35(2): 320-331.
[1] Griffin D K, Perrotta G. Feasibility study of the geostationary stratospheric lighter-than-air platform, AIAA-2000-2305[R]. Reston: AIAA, 2000.[2] Masahiko O. Design and applications of a stratospheric long endurance LTA platform, AIAA-2001-5266[R]. Reston: AIAA, 2001.[3] Nayler A W L. Airship activity and development world-wide-2003, AIAA-2003-6727[R]. Reston: AIAA, 2003.[4] Colozza A, Dolce J. Initial feasibility assessment of a high altitude long endurance airship, NASA CR-212724[R]. Washington, D.C.: NASA, 2003.[5] Khoury G A, Gillett J D. Airship technology[M]. London: Cambridge University Press, 1999: 20-30.[6] Wang H H, Yuan Z H, Wu J. Analysis of the motion control methods for stratospheric balloon-borne gondola platform[C]//Proceedings of the 4th International Symposium on Instrumentation Science and Technology. Harbin: IOP, 2006: 1295-1300.[7] Yang J, Lv D R. Progresses in the study of stratosphere-troposhere exchange[J]. Advances in Earth Sciences, 2003, 18(3): 380-385. (in Chinese) 杨健, 吕达仁. 平流层—对流层交换研究进展[J]. 地球科学进展, 2003, 18(3): 380-385.[8] Lutz T, Funk P, Jakobi A, et al. Considerations on laminar flow for a stratospheric airship platform[C]//Proceedings of the 3rd International Airship Convention and Exhibition. New York: IEEE, 2000: 1-15.[9] Li Z B, Wu L, Zhang J R, et al. Review of dynamic and control of stratospheric airships[J]. Advances in Mechanics, 2012, 42(4): 483-493. (in Chinese) 李智斌, 吴雷, 张景瑞, 等.平流层飞艇动力学与控制研究进展[J]. 力学进展, 2012, 42(4): 483-493.[10] Dolce J L, Collozza A. High-altitude, long-endurance airships for coastal surveillance, NASA CR-212724[R]. Washington, D.C.: NASA, 2005.[11] Knaupp W, Mundschau E. Photovolatic-hydrogen engergy systems for stratopheric platforms[C]//Proceedings of the 3rd World Conference on Pholovoltaic Energy Conversion. New York: IEEE, 2003: 2143-2147.[12] Wu X T, Moog C H, Marquez-Martinez L A, et al. Full model of a buoyancy-driven airship and its control in the vertical plane[J]. Aerospace Science and Technology, 2013, 26(1): 138-152.[13] Liesk T, Nahon M, Boulet B. Design and experimental validation of a nonlinear low-level controller for an unmanned fin-less airship[J]. IEEE Transactions on Control Systems Technology, 2013, 21(1): 149-161.[14] Mazhar H, Nahon M, Liesk T. Validation of a dynamics model and controller for an unmanned finless airship, AIAA-2013-1300[R]. Reston: AIAA, 2013.[15] Guo J G, Zhou J. Compound control system design of stratospheric airship based on aircrew systems[J]. Journal of Astronautics, 2009, 30(1): 225-228. (in Chinese) 郭建国, 周军.基于螺旋桨系统的平流层飞艇复合控制系统[J]. 宇航学报, 2009, 30(1): 225-228.[16] Zhang M H, Duan D P, Chen L.Turning mechanism and composite control of stratospheric airships[J]. Journal of Zhejiang Univerisity-SCIENCE C, 2012, 13(11): 859-865.[17] Chen L, Zhou G, Yan X J, et al. Composite control strategy of stratospheric airships with moving masses[J]. Journal of Aircraft, 2012, 49(3): 794-801.[18] Harada K, Eguchi K, Sano M, et al. Experimental study of thermal modeling for stratosphereic plantform airship, AIAA-2003-6833[R]. Reston: AIAA, 2003.[19] Gomes V B, Ramos J G. Airship dynamic modeling for autonomous operation[C]//Proceedings of the 1998 IEEE International Conference on Robotics and Automation. New York: IEEE, 1998: 3462-3467.[20] Ouyang J, Qu W D, Xi Y G. Stratospheric verifying airship modeling and analysis[J]. Journal of Shanghai Jiongtong University, 2003, 37(6): 956-960. (in Chinese) 欧阳晋, 屈卫东, 席裕庚. 平流层验证飞艇的建模与分析[J]. 上海交通大学学报, 2003, 37(6): 956-960.[21] Li Y W, Nahon M. Modeling and simulation of airship dynamics[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(6): 1691-1700.[22] Liu Y, Hu Y M, Wu Y L. Stability and control analysis based on airship dynamic modeling[C]//Proceedings of 2007 IEEE International Conference on Automation and Logistics. New York: IEEE, 2007: 2744-2748.[23] Schmidt D K. Modeling and near-space stationkeeping control of a large high-altitude airship[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(2): 540-547.[24] Chen L, An J W, Yang C W. Exploring some key problems in modeling a strtsperic airship[J]. Journal of Northwestern Polytechnical University, 2007, 25(3): 383-387. (in Chinese) 陈澜, 安锦文, 杨常伟. 平流层飞艇建模关键问题研究[J]. 西北工业大学学报, 2007, 25(3): 383-387.[25] Li Y W, Nahon M, Sharf I. Airship dynamics modeling: a literature review[J]. Progress in Aerospace Sciences, 2011, 47(3): 217-239.[26] Yu L, Wu Y L. Dynamics research of an autonomous airship[J]. Procedia Engineering, 2011, 15: 817-822.[27] Fang X L, Liu X X, Wang F, et al. Research on modeling technology for a high altitude airship[J]. Procedia Engineering, 2011, 15: 747-751.[28] Kulczycki E A, Koehler S M, Elfes A, et al. Development of an analytical parameterized linear lateral dynamic model for an aerobot airship, AIAA-2011-6292[R]. Reston: AIAA, 2011.[29] Azinheira J R, Moutinho A, de Paiva E C. Airship hover stabilization using a backstepping control approach[J].Journal of Guidance, Control, and Dynamics, 2006, 29(4): 903-914.[30] Liesk T. Integral backstepping control of an unmanned, unstable, fin-less airship, AIAA-2010-7735[R]. Reston: AIAA, 2010.[31] Azouz N, Bestaoui, Y, Lemaitre O. Dynamic analysis of airship with small deformations[C]//Proceedings of the 3rd International Workshop on Robot Motion and Control. New York: IEEE, 2002: 209-215.[32] Cai Z L, Qu W D, Xi Y G. Dynamic modeling for airship equipped with ballonets and ballast[J]. Applied Mathematics and Mechanics, 2005, 26(8): 979-987. (in Chinese) 蔡自立, 屈卫东, 席裕庚. 带有升降气囊与压块的飞艇动力学建模[J]. 应用数学和力学, 2005, 26(8): 979-987.[33] Cai Z L, Qu W D, Xi Y G. Dynamic modeling for airship equipped with ballonets and ballast[J]. Applied Mathematics and Mechanics, 2005, 26(8): 1072-1082.[34] Shi H, Song B Y, Zhou L, et al. Effect of the control style of a stratospheric airship on its floating performance[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(5): 800-805. (in Chinese) 施红, 宋保银, 周雷, 等.平流层飞艇的控制模式对其定点特性的影响[J]. 航空学报, 2009, 30(5): 800-805.[35] Chen X J, Qi H, Wang X P, et al. Modeling and simulation of pressure conrol for stratospheric platform airship[C]//Proceedings of the 6th World Congress on Intelligent Control and Automation. New York: IEEE, 2006: 6208-6212.[36] Ouyang J. Research on modeling and control of an unmanned airship[D]. Shanghai: Department of Automation, Shanghai Jiongtong University, 2003. (in Chinese) 欧阳晋. 空中无人飞艇的建模与控制方法研究[D]. 上海: 上海交通大学自动化系, 2003.[37] Fang C G. The study on dynamics modeling and control for stratospheric telecommunication platform-unmanned airship[D]. Shenyang: School of Information Science and Engineering, Northeastern University, 2003. (in Chinese) 方存光. 平流层信息平台——自主飞艇动力学建模与控制的研究[D]. 沈阳: 东北大学信息科学与工程学院, 2003.[38] de Paiva E C, Bueno S S, Bergerman M. A robust pitch attitude controller for AURORA's semi-autonomous robotic airship, AIAA-1999-3907[R]. Reston: AIAA, 1999.[39] Mueller J B, Paluszek M A, Zhao Y. Development of an aerodynamic model and control law design for a high altitude airship, AIAA-2004-6479[R]. Reston: AIAA, 2004.[40] Schmidt D K. Dynamic modeling, and station-keeping guidance of a large high-altitude near-space airship, AIAA-2006-6781[R]. Reston: AIAA, 2006.[41] Miller C J, Sullivan J, McDonald S. High altitude airship simulation control and low altitude flight demonstration, AIAA-2007-2766[R]. Reston: AIAA, 2007.[42] Azinheira J R, Rives P, Carvalho R H, et al. Visual servo control for the hovering of an outdoor robotic airship[C]//Proceeding of the 2002 IEEE International Conference on Robotics and Automation. New York: IEEE, 2002: 2787-2792.[43] Kulczycki E A, Joshi S S, Hess R A, et al. Towards controller design for autonomous airships using SLC and LQR methods, AIAA-2006-6778[R]. Reston: AIAA, 2006.[44] Trevino R, Frye M, Franz J A, et al. Robust receding horizon control of a tri-turbofan airship[C]//Proceedings of IEEE International Conference on Control and Automation. New York: IEEE, 2007: 671-676.[45] Kaempf B G, Well K H. Attitude control system for a remotely-controlled airship, AIAA-1995-1622[R]. Reston: AIAA, 1995.[46] Lee S J, Kim D M, Bang H C. Feedback linearization controller for semistation keeping of the unmanned airship, AIAA-2005-7343[R]. Reston: AIAA, 2005.[47] Park C, Lee H, Tahk M, et al. Airship control using neural network augmented model inversion[C]//Proceedings of IEEE Conference on Control Applications. New York: IEEE, 2003: 558-563.[48] Kusagaya T, Fujii H A, Kojima H, et al. Nonlinear optimal control applied to longitudinal motion of an airship, AIAA-2003-6801[R]. Reston: AIAA, 2003.[49] Wang X L, Shan X X. Airship attitude tracking system[J]. Applied Mathematics and Mechanics, 2006, 27(7): 805-811. (in Chinese) 王晓亮, 单雪雄.飞艇姿态跟踪系统的研究[J]. 应用数学和力学, 2006, 27 (7): 805-811.[50] Falahpour M, Moradi H, Refai H H, et al. Performance comparison of classic and fuzzy logic controller for communication airship[C]//IEEE/AIAA 28th Digital Avionics Systems Conference. New York: IEEE, 2009: 4.A.6-1-4.A.6-8.[51] de Paiva E C, Benjovengo F, bueno S S, et al. Nonlinear control approaches for an autonomous unmanned robotic airship, AIAA-2007-7782[R]. Reston: AIAA, 2007.[52] Benjovengo F P, de Paiva E C, Bueno S S, et al. Sliding mode control approaches for an autonomous unmanned airship, AIAA-2009-2869[R]. Reston: AIAA, 2009.[53] Yang Y N, Wu J, Zheng W. Adaptive fuzzy sliding mode control for robotic airship with model uncertainty and external disturbance[J]. Journal of Systems Engineering and Electronics, 2012, 23(2): 250-255.[54] Yang Y N, Wu J, Zheng W. Concept design, modeling and station-keeping attitude control of an earth observation platform[J]. Chinese Journal of Mechanical Engineering, 2012, 25(6): 1245-1254.[55] Yang Y N, Wu J, Zheng W. Design, modeling and control for astratospheric telecommunication platform[J]. Acta Astronautica, 2012, 80(6): 181-189.[56] Beji L, Abichou A, Bestaoui Y. Stabilization of a nonlinear underactuated autonomous airship a combined averaging and backstepping approach[C]//Proceedings of the 3rd International Workshop on Robot Motion and Control. New York: IEEE, 2002: 223-229.[57] Park C S, Lee H, Tahk M J, et al. Airship control using neural network augmented model inversion[C]//Proceedings of 2003 IEEE Conference on Control Applications. New York: IEEE, 2003: 558-563.[58] Moutinho A, Azinheira J R. Stability and robustness analysis of the AURORA airship control system using dynamic inversion[C]//Proceedings of the 2005 IEEE International Conference on Robotics and Automation. New York: IEEE, 2005: 2265-2270.[59] Azinheira J R, Moutinho A, de Paiva E C. Airship hover stabilization using a backstepping control approach[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(4): 903-914.[60] Hygounenc E, Soueres P. Automatic airship control involving backstepping techniques[C]//Proceedings of 2002 IEEE International Conference on Systems, Man and Cybernetics. New York: IEEE, 2002: 1-5.[61] Cai Z L, Qu W D, Xi Y G, et al. Stabilization of an underactuated bottom-heavy airship via interconnection and damping assignment[J]. International Jornal of Robust Nonlinear Control, 2007, 17: 1690-1715.[62] Wu X T, Moog C H, Hu Y M. Singular perturbation approach to moving mass control of buoyancy-driven airship in 3-D space[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2011, 28(4): 343-352.[63] Hong C H, Choi K C, Kim B S. Applications of adaptive neural network control to an unmanned airship[J]. International Journal of Control, Automation, and Systems, 2009, 7(6): 911-917.[64] Yang Y N, Wu J, Zheng W. Station-keeping control for a stratospheric airship platform via fuzzy adaptive backstepping approach[J]. Advances in Space Research, 2013, 51(7): 1157-1167.[65] Potdaar T S, Sinha P, Pant R S. Controller design for an outdoor autonomous airship, AIAA-2013-1301[R]. Reston: AIAA, 2013.[66] Bestaoui Y. Characterization of non trim trajectories of an autonomous underactuated airship in a low velocity flight[C]//Proceedings of the 2005 IEEE International Conference on Robotics and Automation. New York: IEEE, 2005: 2259-2264.[67] Repoulias F, Papadopoulos E. Dynamically feasible trajectory and open-loop control design for unmanned airships[C]//Proceedings of Mediterranean Conference on Control and Automation. New York: IEEE, 2007: 1-6.[68] D'Ambrosio D, de Matteis G, de Socio L M. Controlled ascent of an airship for high altitudes, AIAA-1995-3447[R]. Reston: AIAA, 1995.[69] Zhao Y Y, Garrard W, Mueller J. Benefit of trajectory optimization in airship flights, AIAA-2004-6527[R]. Reston: AIAA, 2004.[70] Mueller J B, Zhao Y Y, Garrard W L. Optimal ascent trajectories for stratospheric airships using wind energy[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(4): 1232-1245.[71] Jia R T, Frye M T, Qian C J. Control of an airship using particle swarm optimization and neural network[C]//Proceedings of the IEEE International Conference on Systems, Man and Cybernetics. New York: IEEE, 2009: 1809-1814.[72] Ramos J G, de Paiva E C, Azinheira J R, et al. Autonomous flight experiment with a robotic unmanned airship[C]//Proceedings of the International Conference on Robotics and Automation. New York: IEEE, 2001: 4152-4157.[73] Guo J G, Zhou J. Altitude control system of autonomous airship based on fuzzy logic[C]//Proceedings of the 2nd International Symposium on Systems and Control in Aerospace and Astronautics. New York: IEEE, 2008: 1-5.[74] Guo J G. Velocity control system of autonomous airship based on adaptive dynamic inversion[J]. Journal of Astronautics, 2008, 29(5): 1505-1508. (in Chinese) 郭建国. 基于自适应动态逆的自主飞艇速度控制系统设计[J]. 宇航学报, 2008, 29(5): 1505-1508.[75] Silveira G F, Carvalho J R H, Rives P, et al. Optimal visual servoed guidance of outdoor autonomous robotic airships[C]//Proceedings of the 2002 American Control Conference. New York: IEEE, 2002: 779-784.[76] Zhang Y, Qu W D, Xi Y G, et al. Adaptive stabilization and trajectory tracking of airship with neutral buoyancy[J]. Acta Automatica Sinica, 2008, 34(11): 1437-1440.[77] Zhang Y, Qu W D, Xi Y G, et al. Stabilization and trajectory tracking of autonomous airship's planar motion[J]. Journal of Systems Engineering and Electronics, 2008, 19(5): 974-981.[78] Luo J, Xie S R, Rao J J, et al. Robotic airship mission path tracking control based on human operator's skill[C]//Proceedings of IEEE International Symposium on Computational Intelligence in Robotics and Automation. New York: IEEE, 2005: 537-540.[79] de Paiva E C, Benjovengo F, Bueno S S. Sliding mode control for the path following of an unmanned airship[C]//Proceedings of 6th IFAC Symposium on Intelligent Autonomous Vehicles, 2007: 221-227.[80] Beji L, Abichou A. Tracking control of trim trajectories of a blimp for ascent and descent flight manieuvres[J]. International Journal of Control, 2005, 78(10): 706-719.[81] Lee S, Lee H, Won D, et al. Back-stepping approach of trajectory tracking control for the mid-altitude unmanned airship, AIAA-2007-6319[R]. Reston: AIAA, 2007.[82] Repoulias F, Papadopoulos E. Robotic airship trajectory tracking control using a backstepping methodology[C]//Proceedings of IEEE International Conference on Robotics and Automation. New York: IEEE, 2008: 188-193.[83] Azinheira J R, Moutinho A, de Paiva E C. A backstepping controller for path-tracking of an underactuated autonomous airship[J]. International Journal of Robust Nonlinear Control, 2009, 19(4): 418-441.[84] Acosta D M, Joshi S S. Adptive nonlinear dynamic inversion control of an autonomous airship for the exploration of Titan, AIAA-2007-6502[R]. Reston: AIAA, 2007.[85] Kahale E, Garcia P C, Bestaoui Y. Autonomous path tracking of a kinematic airship in presence of unknown gust[J]. Journal of Intelligent & Robot Systems, 2013, 69(4): 431-446.[86] Guo J G, Jun Z. Lateral path controller design for autonomous airship[C]//Proceedings of the 2nd International Conference on Intelligent Human-Machine Systems and Cybernetics. New York: IEEE, 2010: 276-279.[87] Elfes A, Bueno S S, Ramos J J G, et al. Modeling, control and perception for an autonomous robotic airships[J]. Lecture Notes in Computer Science, 2002, 2238: 216-244.[88] Wu Y M, Zhu M, Zuo Z Y, et al. Trajectory tracking of a high altitude unmanned airship based on adaptive feedback linearization[C]//Proceedings of International Conference on Mechatronic Science, Electric Engineering and Computer. New York: IEEE, 2011: 2257-2261.[89] Zheng Z W, Huo W, Wu Z. Trajectory tracking control for underactuated stratospheric airship[J]. Advances in Space Research, 2012, 50(7): 906-917.[90] Zheng Z W, Huo W, Wu Z. Autonomous airship path following control: theory and experiments[J]. Control Engineering Practice, 2013, 21(6): 769-788. |
[1] | Yuqing QIU, Yan LI, Jinxi LANG, Yuxian LIU, Zhong WANG. Robust adaptive attitude control of high-speed helicopters in transition mode [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529927-529927. |
[2] | Wei ZHANG, Ruojun HE. Autonomous trajectory design for IoT data collection by UAV [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 329054-329054-1. |
[3] | Zhenyang HAO, Fengtao SUN, Zhihao JI, Xinyuan JING, Xin CAO. An improved closed⁃loop I/f control method for aero⁃generator systems [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(3): 328678-328678. |
[4] | Guangquan DUAN, Guoping LIU. Adaptive prescribed control of position and attitude of combined spacecraft based on fully actuated system approach [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 628837-628837. |
[5] | Zixiao YANG, Shiyao LI, Chen WEI, Zhan LI, Bo ZHU. Robust control of underactuated 3-DOF helicopter based on lower order disturbance estimator [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 629056-629056. |
[6] | Bing XIAO, Haichao ZHANG. Reinforcement learning robust optimal control for spacecraft attitude stabilization [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 628890-628890. |
[7] | Chao DUAN, Xiaodong SHAO, Qinglei HU, Huaining WU. Attitude tracking of underactuated spacecraft based on transverse function [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 628910-628910. |
[8] | Zhenwei WANG, Kai LIU, Jian GUO, Xiaopeng LIU. A multi⁃UAVs and multi⁃USVs formation cooperative mechanism based on leader⁃follower strategy [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729791-729791. |
[9] | Zhe LIU, Xige ZHANG, Changzhu WEI, Naigang CUI. High-precision adaptive convex programming for reentry trajectories of suborbital vehicles [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729430-729430. |
[10] | Xiaoyun SHEN, Shuo ZHANG, Siyuan ZHANG. Simulation of 3D real-time monitoring system of aircraft in terminal area [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S1): 727598-727598. |
[11] | Chenyang LIU, Dawei WU, Yize GUO, Xinsai LV, Jiani ZHOU, Shuyi SHAO. Robust adaptive attitude control of quadrotor with uncertain strong coupling [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S1): 727645-727645. |
[12] | Lu ZHUANG, Zhong LU, Haijing SONG, Li DONG, Yuting WU, Jia ZHOU. Safety analysis for fly⁃by⁃wire system based on fault injection model [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(9): 327329-327329. |
[13] | Baichuan ZHANG, Wenhao BI, An ZHANG, Zeming MAO, Mi YANG. Transformer-based error compensation method for air combat aircraft trajectory prediction [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(9): 327413-327413. |
[14] | Qiaowen JIANG, Yu LIU, Ziran DING, Shun SUN, Tao JIAN. Online classification of target behavior pattern based on spatiotemporal trajectory information [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(8): 327281-327281. |
[15] | Yongzhi SHENG, Jiahao GAN, Chengxin ZHANG. Fractional order sliding mode guidance law design with trajectory adjustable and terminal angular constraint [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(7): 327073-327073. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341