ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2014, Vol. 35 ›› Issue (2): 332-350.doi: 10.7527/S1000-6893.2013.0358
• Review • Previous Articles Next Articles
ZHANG Chi1, LIN Yuzhen1, XU Huasheng2, XU Quanhong1
Received:
2013-06-14
Revised:
2013-08-06
Online:
2014-02-25
Published:
2013-08-28
Supported by:
BUAA Weishi Scientific Research Foundation (YWF-11-03-Q-023)
CLC Number:
ZHANG Chi, LIN Yuzhen, XU Huasheng, XU Quanhong. Development Status and Level of Low Emissions Combustor Technologies for Civil Aero-engine[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014, 35(2): 332-350.
[1] International Civil Aviation Organization. ICAO enviromental reoport 2010-aviation and climate change[S]. Montreal: ICAO Environment Branch, 2010.[2] Lee D S, Pitari G, Grewe V, et al. Transport impacts on atmosphere and climate: aviation[J]. Atmospheric Environment, 2010, 44(37): 4678-4734.[3] Lee C M, Chang C, Kramer S, et al. NASA project develops next generation low-emissions combustor technologies[C]//51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2013.[4] Mongia H C. Engineering aspects of complex gas turbine combustion mixers Part V: 40 OPR[C]//9th Annual International Energy Conversion Engineering Conference, 2011.[5] International Civil Aviation Organization. International standards and recommended practices, environmental protection, Annex 16, to the convention on international civil aviation, Volume Ⅱ, aircraft engine emissions[S]. Montreal: ICAO, 2005.[6] Lin Y Z, Xu Q H, Liu G E. Gas turbine combustor[M]. Beijing: National Defense Industry Press, 2008. (in Chinese) 林宇震, 许全宏, 刘高恩. 燃气轮机燃烧室[M]. 北京: 国防工业出版社, 2008.[7] Peng Y H, Xu Q H, Zhang C, et al. Development of low emission combustor for China's large aircraft engine[C]//Academic Annual Conference of Chinese Society of Aeronautics and Astronautics: Special Topic of Power 54, 2007. (in Chinese) 彭云晖, 许全宏, 张弛, 等. 我国大飞机发动机低污染燃烧室发展考虑[C]//大型飞机关键技术高层论坛暨中国航空学会2007年年会: 动力专题54, 2007.[8] Xu H S, Deng Y H, Ma C X. Low emission combustor technology of civil aero engine[J]. Aeronautical Science & Technology, 2012(4): 5-10. (in Chinese) 徐华胜, 邓远灏, 马存祥. 民用航空发动机低排放燃烧室技术[J]. 航空科学技术, 2012(4): 5-10.[9] Federal Aviation Administration. Tile 14-aeronautics and space: PART 34-fuel venting and exhaust emission requirements for turbine engine powered airplanes[S][R]. Washington: FAA, 1990.[10] Civil Aviation Administration of China. CCAR-34 regulation of turbine engine fuel exhaust and gas emissions[S]. Beijing: CAAC, 2002. (in Chinese) 中国民用航空总局. CCAR-34 涡轮发动机飞机燃油排泄和排气排出物规定[S]. 北京: 中国民用航空总局, 2002.[11] Denney R K, Tai J C, Mavris D N. Emissions prediction for aircraft conceptual design[C]//48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2012.[12] European Commission. European aeronautics: a vision for 2020, KI-34-01-827-EN-C. 2001.[13] European Commission. Flightpath 2050 Europe's vision for aviation, KI-31-11-098-EN-C. 2011.[14] Mongia H C. TAPS-A 4th generation propulsion combustor technology for low emissions[C]//AIAA/ICAS International Air and Space Symposium and Exposition, 2003.[15] Bulzan D, Anderson B, Wey C, et al. Gaseous and particulate emissions results of the NASA alternative aviation fuel experiment (AAFEX), ASME Paper, GT-2010-23524[R]. Glasgow, UK: ASME, 2010.[16] Liu T, Ji J, Qi F, et al. Development of China's fundamental research in combustion[J]. Science Foundation in China, 2012(6): 325-329. (in Chinese) 刘涛, 纪军, 齐飞, 等. 我国燃烧领域的基础研究进展[J]. 中国科学基金, 2012(6): 325-329.[17] Glassman I, Yetter R A. Combustion[M]. 4th ed. Burlington: Academic Press, 2008.[18] Law C K. Combustion physics[M]. Cambridge: Cambridge University Press, 2006.[19] Dooley S, Won S H, Heyne J, et al. The experimental evaluation of a methodology for surrogate fuel formulation to emulate gas phase combustion kinetic phenomena[J]. Combustion and Flame, 2012, 159(4): 1444-1466.[20] Blevins L G. Particulate matter emitted from aircraft engines[C]//AIAA/ICAS International Air and Space Symposium and Exposition: The Next 100 Years, 2003.[21] Lefebvre A H, Ballal D R. Gas turbine combustion-alternative fuels and emissions[M]. 3rd ed. Boca Raton: CRC Press, 2010.[22] Mongia H C. Engineering aspects of complex gas turbine combustion mixers Part IV: swirl cup[C]//9th Annual International Energy Conversion Engineering Conference, 2011.[23] Chang C T, Holdeman J D. Low emissions RQL flametube combustor test results, NASA/TM-2001-211107[R]. Cleveland, OH: NASA, 2001.[24] Holdeman J D, Chang C T. Low emissions RQL flametube combustor component test results, NASA/TM-2001-210678[R]. Cleveland, OH: NASA, 2001.[25] Koopman F S, Ols J T, Padget F C, IV, et al. RQL integrated module rig test, NASA/CR-2004-212881[R]. Cleveland, OH: NASA, 2004.[26] Rosfjord T J, Padget F C. Experimental assessment of the emissions control potential of a rich/quench/lean combustor for high speed civil transport aircraft engines, NASA/CR-2001-210613[R]. Cleveland, OH: NASA, 2001.[27] Li J. Analysis of rich-burn/quick-quench/lean-burn combustor technology[J]. Aeroengine, 2011, 37(2): 51-53. (in Chinese) 李杰. 富油燃烧-猝熄-贫油燃烧燃烧室技术分析[J]. 航空发动机, 2011, 37(2): 51-53.[28] International Civil Aviation Organization. Report of the independent experts to CAEP/8 on the second NOx review & long term technology goals, CAEP/8-WP/10[S]. Montreal: ICAO, 2009.[29] Zhao J X. Pollutant emission and development of low-emission combustion technology for civil aero engine[J]. Journal of Aerospace Power, 2008, 23(6): 986-996. (in Chinese) 赵坚行. 民用发动机污染排放及低污染燃烧技术发展趋势[J]. 航空动力学报, 2008, 23(6): 986-996.[30] Bank R D, Schilling T. Development of an ultra-low NOx LP(P) burner, ASME Paper, GT-2004-53341. Vienna: ASME, 2004.[31] Lin Y Z, Peng Y H, Liu G E. A preliminary study of NOx emission of staging/premixed and prevaporized lean combustion low emission combustor scheme[J]. Journal of Aerospace Power, 2003, 18(4): 492-497. (in Chinese) 林宇震, 彭云晖, 刘高恩. 分级/预混合预蒸发贫油燃烧低污染方案NOx排放初步研究[J]. 航空动力学报, 2003, 18(4): 492-497.[32] Li F, Cheng M, Shang S T, et al. Capability compare of twin annular premixing swirler with the single annular and dual annualr combustor[J]. Journal of Aerospace Power, 2012, 27(8): 1681-1687. (in Chinese) 李锋, 程明, 尚守堂, 等. 双环预混旋流与单、双环腔燃烧室性能对比[J]. 航空动力学报, 2012, 27(8): 1681-1687.[33] Gomez R V, Dolan B, Munday D, et al. Medium pressure emissions of a multipoint low NOx combustion system[C]//51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2013.[34] Smith L L, Dai Z, Lee J C, et al. Advanced combustor concepts for low emissions supersonic propulsion[J]. Journal of Engineering for Gas Turbines and Power, 2013, 135(5): 051503-1-12.[35] Timko M T, Herndon S C, de la Rosa Blanco E, et al. Combustion products of petroleum jet fuel, a Fischer-Tropsch synthetic fuel, and a biomass fatty acid methyl ester fuel for a gas turbine engine[J]. Combustion Science and Technology, 2011, 183(10): 1039-1068.[36] Lin Y, Lin Y, Zhang C, et al. Evaluation of combustion performance of a coal-derived synthetic jet fuel, ASME Paper, GT-2012-68604[R]. Copenhagen: ASME, 2012.[37] Rye L, Wilson C. The influence of alternative fuel composition on gas turbine ignition performance[J]. Fuel, 2012, 96: 277-283.[38] Li Y C, Zheng G H. Review of study history and low emission combustion technology development on aero gas turbines fuelling hydrogen[J]. Journal of Aerospace Power, 2012, 27(3): 572-577. (in Chinese) 李迎春, 郑光华. 航空燃气涡轮发动机氢燃料研究历史和低污染燃烧技术发展[J]. 航空动力学报, 2012, 27(3): 572-577.[39] Daggett D, Hadaller O, Hendricks R, et al. Alternative fuel potential impact aviation, NASA/TM-2006-214365[R]. Cleveland, OH: NASA, 2006.[40] Maniaci D C. Relative performance of a liquid hydrogen-fueled commercial transport[C]//46th AIAA Aerospace Sciences Meeting and Exhibit, 2008.[41] Burguburu J, Cabot G, Renou B, et al. Comparisons of the impact of reformer gas and hydrogen enrichment on flame stability and pollutant emissions for a kerosene/air swirled flame with an aeronautical fuel injector[J]. International Journal of Hydrogen Energy, 2011, 36(11): 6925-6936.[42] Burguburu J, Cabot G, Renou B, et al. Effects of H2 enrichment on flame stability and pollutant emissions for a kerosene/air swirled flame with an aeronautical fuel injector[C]//Proceedings of the Combustion Institute, 2011, 33: 2927-2935.[43] Mongia H C. On continuous NOx reduction of aero-propulsion engines[C]//48th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2010.[44] Schweitzer J K, Anderson J S, Scheugenpflug H, et al. Validation of propulsion technologies and new engine concepts in a joint technology demonstrator program[C]//ⅩⅦ International Symposium on Air Breathing Engines (ISABE), 2005.[45] McKinney R G, Sepulveda D, Sowa W, et al. The Pratt & Whitney TALON X low emissions combustor: revolutionary results with evolutionary technology[C]//45th AIAA Aerospace Sciences Meeting and Exhibit, 2007.[46] Snyder T S, Stewart J F, Stoner M D, et al. Application of an advanced CFD-based analysis system to the PW6000 combustor to optimize exit temperature distribution: Part Ⅱ-comparison of predictions to full annular rig test data, ASME Paper, GT-2001-0064[R]. New Orleans: ASME, 2001.[47] Michael F, Doug T, Richard S, et al. Development of the GE aviation low emissions TAPS combustor for next generation aircraft engines[C]//50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2012.[48] Yan Y W, Xu R, Deng Y H, et al. Flow field study for head of lean premixed prevaporized low-emission combustor[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(6): 965-976. (in Chinese) 颜应文, 徐榕, 邓远灏, 等. 贫油预混预蒸发低污染燃烧室头部流场研究[J]. 航空学报, 2012, 33(6): 965-976.[49] Mongia H C. GE aviation low emissions combustion technology evolution, SAE-07ATC-88[R]. 2007.[50] Hsieh S Y, Hsiao G C C, Li S C, et al. Mixer assembly for combustor of a gas turbine engine having a plurality of counter-rotating swirlers: United States. US 7581396 B2[P]. 2009-09-01.[51] Hsieh S Y, Hsiao G C C, Li S C, et al. Mixer assembly for combustor of a gas turbine engine having a plurality of counter-rotating swirlers: United States. US 20070028624 A1. 2007-02-08.[52] Dhanuka S K, Temme J E, Driscoll J. Unsteady aspects of lean premixed prevaporized gas turbine combustors: flame-flame interactions[J]. Journal of Propulsion and Power, 2011, 27(3): 631-641.[53] Sturgess G J, Shouse D T, Zelina J, et al. Emissions reduction technology for military gas turbines[C]//AIAA/ICAS International Air and Space Symposium and Exposition, 2003.[54] Mancini M A, Vermeersch M L, Thomsen D, et al. Method and apparatus to decrease combustor emissions: United States. US 6865889 B2[P]. 2005-05-15.[55] Deng Y H, Yan Y W, Zhu J W, et al. Numerical study of two-phase spray combustion for lean premixed prevaporized low-emission combustor[J]. Journal of Propulsion Technology, 2013, 34(3): 353-361. (in Chinese) 邓远灏, 颜应文, 朱嘉伟, 等. LPP低污染燃烧室两相喷雾燃烧数值研究[J]. 推进技术, 2013, 34(3): 353-361.[56] Honnet S, Seshadri K, Niemann U, et al. A surrogate fuel for kerosene[J]. Proceedings of the Combustion Institute, 2009, 32(1): 485-492.[57] Dhanuka S K, Temme J E, Driscoll J F, et al. Vortex-shedding and mixing layer effects on periodic flashback in a lean premixed prevaporized gas turbine combustor[J]. Proceedings of the Combustion Institute, 2009, 32(2): 2901-2908.[58] Foust M J, Mongia H C. Method and apparatus for controlling combustor emissions: United States. US 6418726 B1[P]. 2002-07-16.[59] Li S C, Hsieh S Y, Hsiao G C C, et al. Pilot mixer for mixer assembly of a gas turbine engine combustor having a primary fuel injector and a plurality of secondary fuel injection ports: United States. US 7762073 B2[P]. 2010-07-27.[60] Huang Y, Yang V. Dynamics and stability of lean-premixed swirl-stabilized combustion[J]. Progress in Energy and Combustion Science, 2009, 35(4): 293-364.[61] Lieuwen T C. Unsteady combustor physics[M]. New York: Cambridge University Press, 2012.[62] Gicquel L Y M, Staffelbach G, Poinsot T. Large eddy simulations of gaseous flames in gas turbine combustion chambers[J]. Progress in Energy and Combustion Science, 2012, 38(6): 782-817.[63] Li J. Technology innovations of LEAP-X[J]. Aeronautical Science & Technology, 2011(4): 12-14. (in Chinese) 李杰. LEAP-X发动机的创新性技术[J]. 航空科学技术, 2011(4): 12-14.[64] Angelo M M D, Gallman J, Johnson V, et al.N+3 small commercial efficient and quiet transportation for year 2030-2035, NASA/CR-2010-216691[R]. 2010.[65] Nickolaus D A, Crocker D S, Black D L, et al. Development of a lean direct fuel injector for low emission aero gas turbines, ASME Paper, GT-2002-30409[R]. Amsterdam: ASME, 2002.[66] Tacina R, Wey C, Laing P, et al. Sector tests of a low NOx lean-direct-injection multipoint integrated module combustor concept, ASME Paper, GT-2002-30089. Amsterdam: ASME, 2002.[67] Robert T, Mansour A, Partelow L, et al. Experimental sector and flame-tube evaluations of a multipoint integrated module concept for low emission combustors, ASME Paper, GT-2004-53263. Vienna: ASME, 2004.[68] Lazik W, Doerr T, Bake S, et al. Development of lean-burn low-NOx combustion technology at Rolls-Royce deutschland, ASME Paper, GT-2008-51115[R]. Berlin: ASME, 2008.[69] Heath C M, Anderson R C, Locke R J, et al. Optical characterization of a multipoint lean direct injector for gas turbine combustors: velocity and fuel drop size measurements, NASA/TM-2010-216365[R]. Cleveland, OH: NASA, 2010.[70] Prociw A, Ryon J, Goeke J. Low NOx combustion concepts in support of the NASA environmentally responsible aircraft program, ASME Paper, GT-2012-68426[R]. Copenhagen: ASME, 2012.[71] Liu J, Zhao J W. Development of low emission combustor for foreign civil aeroengine[J]. Aeroengine, 2012(4): 11-16. (in Chinese) 刘静, 肇俊武. 国外民用航空发动机低污染燃烧室的发展[J]. 航空发动机, 2012(4): 11-16.[72] Crocker D S, Nickolaus D A, Smith C E. Piloted airblast lean direct fuel injector: United States. US 6272840[P]. 2001-08-14.[73] Smith C E, Nickolaus D A. Piloted airblast lean direct fuel injector with modified air splitter: United States. US 6986255[P]. 2006-01-17. |
[1] | Zeyong YIN, Gaiqi LI, Jiancheng SHI, Yueqian YIN. Concept, method and practice of advanced versatile core engine derivative [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 29713-029713. |
[2] | Weina HUANG, Fangjuan LI, Hongbin QI. Preliminary investigation and thoughts on aero-engine digital engineering development [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529693-529693. |
[3] | Ruixian MA, Xin WANG, Kaiming WANG, Bin LI, Mingfu LIAO, Siji WANG. Rubbing experimental study on labyrinth and rubber⁃coated case for aero⁃engines [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 628350-628350. |
[4] | Yuan XIAO, Kun FENG, Minghui HU, Zhinong JIANG. Extraction method for unsteady vibration components of aero-engine rotors [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(3): 228158-228158. |
[5] | Bowei MENG, Hu MA, Zhenjuan XIA, Changsheng ZHOU. Numerical study on characterization of integrated rotating detonation combustor and turbine guide vane [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(10): 129223-129223. |
[6] | Jinyi LIU, Jianjun XIONG, Kang GUI, Junfeng GE, Lin YE. Integrated ice detection technology based on multispectral and complex impedance principles [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729309-729309. |
[7] | Yingjiao HU, Feng XU, Zhijun YANG. Overview of aero-engine ice testing capability [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729449-729449. |
[8] | Weiping LI, Longjin YANG. Cooling performance analysis of combustion liner in reverse-flow combustor [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(9): 127326-127326. |
[9] | Neng WAN, Qixin ZHUANG, Yanheng GUO, Zhiyong CHANG, Dao WANG. Sampling strategy for on-machine measurement of aero-engine blade under constraint of fitting accuracy [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(7): 427151-427151. |
[10] | Zhikai WANG, Sheng CHEN, Wei FAN. Effect of neural network width on combustor emission prediction [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 126816-126816. |
[11] | Kailong XU, Zaigang LIU, Shengli JIANG, Xing WANG, Pan ZHANG. Treatment of boundary condition at multiple outlets with recirculating flow and specified flow ratios [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 126830-126830. |
[12] | Zhihao LI, Biao ZHANG, Jian LI, Chuanlong XU, Zhaolong SONG. Reconstruction of three-dimensional refractive index field of premixed swirl combustion flame [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(4): 126480-126480. |
[13] | Miaodong ZHAO, Dianyin HU, Jianxing MAO, Haihe SUN, Shiyong QIN, Yuanxing GU, Rongqiao WANG, Tengyue TIAN, Lin YAN, Zhixing XIAO. Simulating specimen for low cycle fatigue of aero-engine disc: Design and experiment [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(18): 228320-228320. |
[14] | Xiaofeng SUN, Guangyu ZHANG, Xiaoyu WANG, Lei LI, Xiangyang DENG, Ronghui CHENG. Research progress in aero-engine combustion instability prediction and control [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(14): 628733-628733. |
[15] | Pei PENG, Yongping ZHAO, Yuwei WANG. New method for automatic and rapid mining of aero-engine operating patterns [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(11): 327659-327659. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341