[1] Cai H L, Gao Y M, Bing Q J, et al. The research status and key technology analysis of foreign non-cooperative target in space capture system. Journal of the Academy of Equipment Command & Technology, 2010, 21(6):71-77.(in Chinese) 蔡洪亮, 高永明, 邴启军, 等. 国外空间非合作目标抓捕系统研究现状与关键技术分析. 装备指挥技术学院学报, 2010, 21(6): 71-77.[2] Chen T, Xu S J. A fuzzy controller for terminal approach of autonomous rendezvous and docking with non-cooperative target. Journal of Astronautics, 2006,27(3):416-421. (in Chinese) 陈统, 徐世杰. 非合作目式自主交会对接的终端接近模糊控制. 宇航学报, 2006, 27(3): 416-421.[3] Wingo D R. Orbital recovery’s responsive commercial space tug for life extension mission. AIAA-2004-3004, 2004.[4] Polites M E. An assessment of the technology of automated rendezvous and capture in space. NASA-TP-1998-208528, 1998.[5] Regan F J, Kavetsky R A. Add 2 on controller for ballistic reentry vehicles. IEEE Transactions on Automatic Control, 1984, 12(6): 869-880.[6] Lorell K R, Lange B O. An automatic mass-trim system for spinning spacecraft. AIAA Journal, 1972, 10(8): 1031-1015.[7] Childs D A. Movable mass attitude stabilization system for artificial space stations. Journal of Spacecraft and Rockets, 1974, 8(9): 11-15.[8] Kunciw B, Kaplan M. Optimal space station detumbling by Internal mass motion. Automatica, 1976, 12(5):45-51.[9] Salimov G R. On the stability of a rotating space station containing a moving element. Mechanics Solids, 1975, 10(5): 41-45.[10] Jae J K, Brij N A. Automatic mass balancing of air-bearing-based three-axis rotational spacecraft simulator. Journal of Guidance, Control, and Dynamics, 2009, 32(3):1005-1017.[11] Small D, Zajac F. A linearized analysis and design of an automatic balancing system for the three axis air bearing table. NASA TM-X-50177, 1963.[12] Peck M A, Miller L, Cavender A R, et al. Air-bearing-based testbed for momentum control systems and spacecraft line of sight. AAS 2003-127, 2003.[13] Wilson E, Mah R W, Guerrero M C, et al. Imbalance identification and compensation for an airborne telescope. Proceedings of the 1998 IEEE. Piscataway: American Control Conference, 1998: 856-860.[14] Dimitrov D N, Yoshida K. Momentum distribution in a space manipulator for facilitating the post-impact control. IEEE International Conference on Intelligent Robots and Systems, 2004: 80-88.[15] Bossea A B, Barnds W J, Brown M A, et al. SUMO: Spacecraft for the universal modification of orbits. The SPIE Defense and Security Symposium. Bellingham: SPIE, 2004: 36-46.[16] SBischof B, Kerstein L, Starke J, et al. ROGER-Robotic geostationary orbit restorer. AIAA 54th International Astronautical Congress of the International Astronautical Federation, 2003: 1-9.[17] Hirzinger G, Landzettel K, Brunner B, et al. DLRS robotics technologies for on orbit servicing. Advanced Robotics, 2004, 1(18): 3-11.[18] Martin E, Dupuis E, Piedboeuf J C, et al. The TECSAS mission from a Canadian perspective. ISAIRAS 2005 Conference. Germany: ISAIRAS, 2005: 3-11[19] Tanygin S, Williams T. Mass property estimation using coasting maneuvers. Journal of Guidance, Control, and Dynamics, 1997, 20(4): 625-632.[20] Schwartz J L, Hall C D. System identification of a spherical air-bearing spacecraft simulator. AAS-2004-122, 2004.[21] Kim J A, Acikmese A B, Shields J F. Spacecraft inertia estimation via constrained least squares. IEEE Aerospace Conference. Piscataway: IEEE, 2006.[22] Peck M A. Estimation of inertia parameters for gyrostats subject to gravity-gradient torques. AAS 2001-308, 2011.[23] Jung D, Tsiotras P. A 3-dof experimental test-bed for integrated attitude dynamics and control research. AIAA-2003-5331, 2003.[24] Wright S. Parameter estimation of a spacecraft simulator using parameter-adaptive control. Blacksburg: Aerospace and Ocean Engineering Department,Virginia Ploytechnic Institute and State University, 2006.[25] Li Z X, Li G F. Moving centroid reentry vehicle modeling and active disturbance rejection roll control. Acta Aeronautica et Astronautica Sinicia, 2012, 33(11): 2121-2129. (in Chinese) 李自行, 李高风. 移动质心再入飞行器建模及自抗扰滚动控制. 航空学报, 2012, 33(11): 2121-2129. |