| [1] |
PINEAU A, ANTOLOVICH S D. High temperature fatigue of nickel-base superalloys-A review with special emphasis on deformation modes and oxidation[J]. Engineering Failure Analysis, 2009, 16(8): 2668-2697.
|
| [2] |
REED R C. The superalloys: fundamentals and applications[M]. Cambridge: Cambridge University Press, 2008.
|
| [3] |
韩增祥. 温度对变形高温合金热疲劳性能的影响[J]. 燃气涡轮试验与研究, 2007, 20(4): 53-57.
|
|
HAN Z X. Effects of temperature on thermal fatigue properties of some wrought superalloys[J]. Gas Turbine Experiment and Research, 2007, 20(4): 53-57 (in Chinese).
|
| [4] |
ZHONG Z H, GU Y F, YUAN Y, et al. Fatigue crack growth behavior of a newly developed Ni-Co-base superalloy TMW-2 at elevated temperatures[J]. Materials Science and Engineering: A, 2012, 552: 464-471.
|
| [5] |
LIU H, BAO R, ZHANG J Y, et al. A creep-fatigue crack growth model containing temperature and interactive effects[J]. International Journal of Fatigue, 2014, 59: 34-42.
|
| [6] |
WU C H, JIANG R, ZHANG L C, et al. Oxidation accelerated dwell fatigue crack growth mechanisms of a coarse grained PM Ni-based superalloy at elevated temperatures[J]. Corrosion Science, 2022, 209: 110702.
|
| [7] |
TELESMAN J, GABB T P, GHOSN L J, et al. Effect of notches on creep-fatigue behavior of a P/M nickel-based superalloy[J]. International Journal of Fatigue, 2016, 87: 311-325.
|
| [8] |
CHEN X, PETTIT R G, DUDZINSKI D, et al. On the role of crack tip creep deformation in hot compressive dwell fatigue crack growth acceleration in aluminum and nickel engine alloys[J]. International Journal of Fatigue, 2021, 145: 106082.
|
| [9] |
GABB T P, GAYDA J, TELESMAN J, et al. Factors influencing dwell fatigue life in notches of a powder metallurgy superalloy[J]. International Journal of Fatigue, 2013, 48: 55-67.
|
| [10] |
KIM D, JIANG R, REED P A S. Microstructural and oxidation effects on fatigue crack initiation mechanisms in a turbine disc alloy[J]. Journal of Materials Science, 2023, 58(4): 1869-1885.
|
| [11] |
BIKA D, MCMAHON C J. A model for dynamic embrittlement[J]. Acta Metallurgica et Materialia, 1995, 43(5): 1909-1916.
|
| [12] |
MOLINS R, HOCHSTETTER G, CHASSAIGNE J C, et al. Oxidation effects on the fatigue crack growth behaviour of alloy 718 at high temperature[J]. Acta Materialia, 1997, 45(2): 663-674.
|
| [13] |
VISKARI L, HÖRNQVIST M, MOORE K L, et al. Intergranular crack tip oxidation in a Ni-base superalloy[J]. Acta Materialia, 2013, 61(10): 3630-3639.
|
| [14] |
ZHANG X B, LIU C S, LU J Y, et al. Secondarily precipitated phases of a Ni-based superalloy during durable thermal treatment[J]. Journal of Northeastern University, 2005, 26(4): 355-358.
|
| [15] |
侯杰, 董建新, 姚志浩. GH4169合金高温疲劳裂纹扩展的微观损伤机制[J]. 工程科学学报, 2018, 40(7): 822-832.
|
|
HOU J, DONG J X, YAO Z H. Microscopic damage mechanisms during fatigue crack propagation at high temperature in GH4169 superalloy[J]. Chinese Journal of Engineering, 2018, 40(7): 822-832 (in Chinese).
|
| [16] |
MILLER C F, SIMMONS G W, WEI R P. Evidence for internal oxidation during oxygen enhanced crack growth in P/M Ni-based superalloys[J]. Scripta Materialia, 2003, 48(1): 103-108.
|
| [17] |
KITAGUCHI H S, LI H Y, EVANS H E, et al. Oxidation ahead of a crack tip in an advanced Ni-based superalloy[J]. Acta Materialia, 2013, 61(6): 1968-1981.
|
| [18] |
JIANG R, PROPRENTNER D, CALLISTI M, et al. Role of oxygen in enhanced fatigue cracking in a PM Ni-based superalloy: Stress assisted grain boundary oxidation or dynamic embrittlment [J]. Corrosion Science, 2018, 139: 141-154.
|
| [19] |
万煜玮, 周斌, 胡绪腾, 等. 某镍基粉末合金高温疲劳裂纹扩展行为与模型研究[J]. 推进技术, 2023, 44(2): 262-271.
|
|
WAN Y W, ZHOU B, HU X T, et al. High temperature fatigue crack growth behavior and model of a nickel-based powder metallurgy superalloy[J]. Journal of Propulsion Technology, 2023, 44(2): 262-271 (in Chinese).
|
| [20] |
EVANS J L, SAXENA A. Elevated temperature fatigue crack growth rate model for NI-BASE superalloys[J]. International Journal of Fracture, 2014, 185(1): 209-216.
|
| [21] |
CHRIST H J, WACKERMANN K, KRUPP U. Effect of dynamic embrittlement on high temperature fatigue crack propagation in IN718-experimental characterisation and mechanism-based modelling[J]. Materials at High Temperatures, 2016, 33(4/5): 528-535.
|
| [22] |
WANG R Z, ZHU S P, WANG J, et al. High temperature fatigue and creep-fatigue behaviors in a Ni-based superalloy: Damage mechanisms and life assessment[J]. International Journal of Fatigue, 2018, 118: 8-21.
|
| [23] |
HEIL M L. Crack growth in alloy 718 under thermal-mechanical cycling (fatigue, fracture, nickel, superalloy)[D]. Ohio: Air Force Institute of Technology, 1986.
|
| [24] |
徐超, 佴启亮, 姚志浩, 等. 晶界氧化对GH4738高温合金疲劳裂纹扩展的作用[J]. 金属学报, 2017, 53(11): 1453-1460.
|
|
XU C, NAI Q L, YAO Z H, et al. Grain boundary oxidation effect of GH4738 superalloy on fatigue crack growth[J]. Acta Metallurgica Sinica, 2017, 53(11): 1453-1460 (in Chinese).
|
| [25] |
VISKARI L, CAO Y, NORELL M, et al. Grain boundary microstructure and fatigue crack growth in Allvac 718Plus superalloy[J]. Materials Science and Engineering: A, 2011, 528(6): 2570-2580.
|
| [26] |
CHAN K S, ENRIGHT M P, MOODY J, et al. A microstructure-based time-dependent crack growth model for life and reliability prediction of turbopropulsion systems[J]. Metallurgical and Materials Transactions A, 2014, 45(1): 287-301.
|
| [27] |
MA L Z, CHANG K M. Identification of SAGBO-induced damage zone ahead of crack tip to characterize sustained loading crack growth in alloy 783[J]. Scripta Materialia, 2003, 48(9): 1271-1276.
|
| [28] |
ENCINAS-OROPESA A, DREW G L, HARDY M C, et al. Effects of oxidation and hot corrosion in a nickel disc alloy[C]∥Superalloys 2008 Eleventh International Symposium. US: TMS, 2008: 609-618.
|
| [29] |
CAO L Y, CHEN Y, SUN Y L, et al. Regional high temperature fatigue crack growth behavior of a microstructure-gradient nickel-based superalloy[J]. Materials Science and Engineering: A, 2024, 890: 145871.
|