收稿日期:
2023-09-05
修回日期:
2023-09-21
接受日期:
2023-10-17
出版日期:
2024-03-15
发布日期:
2023-12-13
通讯作者:
司瑞
E-mail:sirui@comac.cc
Received:
2023-09-05
Revised:
2023-09-21
Accepted:
2023-10-17
Online:
2024-03-15
Published:
2023-12-13
Contact:
Rui SI
E-mail:sirui@comac.cc
摘要:
增材制造(AM)在复杂结构一体化成形、缩短生产周期和提高材料利用率方面优势显著,已成为实现民用飞机结构快速设计验证、减重降本增效、敏捷航材支援及维修维护应用的重要技术。基于增材制造技术的发展历程,深入剖析了增材制造在民用飞机领域的应用优势及现状,对材料工艺、质量控制、适航要求和经济性等方面的关键挑战进行了详细阐述,并结合增材制造材料供给能力、工艺装备及软件系统性能的提升、产业政策的支持和产业链条的逐渐完善讨论了增材制造技术应用机遇;基于未来发展需求,展望了民用飞机增材制造技术创新应用的发展趋势。
中图分类号:
司瑞, 陈勇. 民用飞机增材制造技术应用发展趋势[J]. 航空学报, 2024, 45(5): 529677-529677.
Rui SI, Yong CHEN. Application trends of additive manufacturing technology for civil aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529677-529677.
表1
不同增材制造工艺的原材料和结合机制
增材制造工艺 | 原材料 | 结合机制 | 激活源 |
---|---|---|---|
立体光固化(SLA) | 液态或糊状的光敏树脂 | 化学反应固化 | 能量光源照射 |
材料喷射 | 液态光敏树脂或熔融态的蜡 | 化学反应粘结或将熔融材料固化粘结 | 用于实现化学反应粘结的辐射光源或实现熔融材料固化粘结的温度场 |
粘结剂喷射 | 粉末、粉末混合物或特殊材料及液态粘结剂、交联剂 | 化学反应和(或)热反应固化粘结 | 取决于粘结剂和(或)交联剂,与所发生的化学反应相关 |
粉末床熔融 | 热塑性聚合物、纯金属或合金、陶瓷等各种不同粉末 | 热反应固结 | 激光、电子束和(或)红外灯等产生的热能 |
材料挤出 | 线材或膏体,典型材料包括热塑性和结构陶瓷材料 | 热黏结或化学反应粘结 | 热、超声或部件之间的化学反应 |
定向能量沉积 | 以金属为主的粉材或丝材,为实现特定用途可加入陶瓷颗粒 | 热反应固结(熔化和凝固) | 激光、电子束、电弧或等离子束等 |
复合增材制造 | 纸、金属箔、聚合物等复合片材 | 热反应、化学反应结合或超声连接 | 局部或大范围加热,化学反应和超声换能器 |
1 | 左世全, 李方正. 我国增材制造产业发展趋势及对策建议[J]. 经济纵横, 2018(1): 74-80. |
ZUO S Q, LI F Z. The development trend and countermeasures of China’s additive manufacturing industry[J]. Economic Review, 2018(1): 74-80 (in Chinese). | |
2 | 辛博, 朱立达, 盛忠起, 等. 增材制造: 技术、原理及智能化[M]. 北京: 机械工业出版社, 2023: 3-7. |
XIN B, ZHU L D, SHENG Z Q, et al. Additive manufacturing: Technology, principle and intelligence[M]. Beijing: China Machine Press, 2023: 3-7 (in Chinese). | |
3 | 黄卫东. 材料3D打印技术的研究进展[J]. 新型工业化, 2016, 6(3): 53-70. |
HUANG W D. Research progress of 3D printing technology for materials[J]. The Journal of New Industrialization, 2016, 6(3): 53-70 (in Chinese). | |
4 | 廖文和, 戴宁. 航空航天结构轻量化设计制造技术发展现状与挑战[J]. 南京航空航天大学学报, 2023, 55(3): 347-360. |
LIAO W H, DAI N. Development and challenge of lightweight design and manufacturing technology for aerospace structures[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2023, 55(3): 347-360 (in Chinese). | |
5 | 王华明. 高性能大型金属构件激光增材制造: 若干材料基础问题[J]. 航空学报, 2014, 35(10): 2690-2698. |
WANG H M. Materials’ fundamental issues of laser additive manufacturing for high-performance large metallic components[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10): 2690-2698 (in Chinese). | |
6 | 雷力明, 侯慧鹏, 何艳丽, 等. 金属增材制造技术在民用航空领域的应用与挑战[J]. 航空制造技术, 2019, 62(21): 22-30. |
LEI L M, HOU H P, HE Y L, et al. Application and challenges of metal additive manufacturing in civil aviation[J]. Aeronautical Manufacturing Technology, 2019, 62(21): 22-30 (in Chinese). | |
7 | BOURELL D L, ROSEN D W, LEU M C. The roadmap for additive manufacturing and its impact[J]. 3D Printing and Additive Manufacturing, 2014, 1(1): 6-9. |
8 | 许世娇, 权纯逸, 杨堃, 等. 金属增材制造技术在航空领域的应用现状及前景展望[J]. 粉末冶金工业,2022, 32(3): 9-17. |
XU S J, QUAN C Y, YANG K, et al. Application and prospect of metal additive manufacturing technology in aviation field [J]. Powder Metallurgy Industry, 2022, 32(3): 9-17 (in Chinese). | |
9 | 杨浩亮, 郭凤明, 万李, 等. 增材制造技术在我国航天领域的发展与应用需求分析[J]. 航天制造技术, 2016(5): 1-4. |
YANG H L, GUO F M, WAN L, et al. Application and development analysis of additive manufacturing technology in China aerospace industry[J]. Aerospace Manufacturing Technology, 2016(5): 1-4 (in Chinese). | |
10 | 巩水利, 锁红波, 李怀学. 金属增材制造技术在航空领域的发展与应用[J]. 航空制造技术, 2013, 56(13): 66-71. |
GONG S L, SUO H B, LI H X. Development and application of metal additive manufacturing technology[J]. Aeronautical Manufacturing Technology, 2013, 56(13): 66-71 (in Chinese). | |
11 | 王华明, 张述泉, 王韬, 等. 激光增材制造高性能大型钛合金构件凝固晶粒形态及显微组织控制研究进展[J]. 西华大学学报(自然科学版), 2018, 37(4): 9-14. |
WANG H M, ZHANG S Q, WANG T, et al. Progress on solidification grain morphology and microstructure control of laser additively manufactured large titanium components[J]. Journal of Xihua University (Natural Science Edition), 2018, 37(4): 9-14 (in Chinese). | |
12 | KELLNER T. The FAA cleared the first 3D printed part to fly in a commercial jet engine from GE[EB/OL]. (2015-04-14) [2023-08-22]. . |
13 | GE. First additive manufactured part to be installed on GEnx commercial airline engines [EB/OL]. (2018-11-02) [2023-08-22]. . |
14 | Company Airbus. Pioneering bionic 3D printing [EB/ OL]. (2016-03-03) [2023-08-22]. . |
15 | Henry C. 增材制造技术在民用航空领域的应用[J]. 赵平, 译. 航空维修与工程, 2023(6): 21-23. |
HENRY C. Advancing manufacturing application for commercial aviation[J]. ZHAO P,translated. Aviation Maintenance & Engineering, 2023(6): 21-23 (in Chinese). | |
16 | 常坤, 梁恩泉, 张韧, 等. 金属材料增材制造及其在民用航空领域的应用研究现状[J]. 材料导报, 2021, 35(3): 3176-3182. |
CHANG K, LIANG E Q, ZHANG R, et al. Status of metal additive manufacturing and its application research in the field of civil aviation[J]. Materials Reports, 2021, 35(3): 3176-3182 (in Chinese). | |
17 | 黄洁, 易俊兰, 李明亮, 等. 浅析影响选区激光熔化技术在民用飞机领域应用的关键[J]. 应用激光, 2022, 42(10): 53-60. |
HUANG J, YI J L, LI M L, et al. Brief analysis of the key factors affecting the application of selective laser melting technology in the field of civil aircraft[J]. Applied Laser, 2022, 42(10): 53-60 (in Chinese). | |
18 | FRAZIER W E. Metal additive manufacturing: A review[J]. Journal of Materials Engineering and Performance, 2014, 23(6): 1917-1928. |
19 | DEBROY T, WEI H L, ZUBACK J S, et al. Additive manufacturing of metallic components—Process, structure and properties[J]. Progress in Materials Science, 2018, 92: 112-224. |
20 | PANWISAWAS C, TANG Y T, REED R C. Metal 3D printing as a disruptive technology for superalloys[J]. Nature Communications, 2020, 11: 2327. |
21 | ALTıPARMAK S C, YARDLEY V A, SHI Z S, et al. Challenges in additive manufacturing of high-strength aluminium alloys and current developments in hybrid additive manufacturing[J]. International Journal of Lightweight Materials and Manufacture, 2021, 4(2): 246-261. |
22 | VAFADAR A, GUZZOMI F, RASSAU A, et al. Advances in metal additive manufacturing: A review of common processes, industrial applications, and current challenges[J]. Applied Sciences, 2021, 11(3): 1213. |
23 | 杨平华, 高祥熙, 梁菁, 等. 金属增材制造技术发展动向及无损检测研究进展[J]. 材料工程, 2017, 45(9): 13-21. |
YANG P H, GAO X X, LIANG J, et al. Development tread and NDT progress of metal additive manufacture technique[J]. Journal of Materials Engineering, 2017, 45(9): 13-21 (in Chinese). | |
24 | 陈玮, 李志强. 航空钛合金增材制造的机遇和挑战[J]. 航空制造技术, 2018, 61(10): 30-37. |
CHEN W, LI Z Q. Additive manufacturing of aerospace titanium alloys: Opportunities and challenges[J]. Aeronautical Manufacturing Technology, 2018, 61(10): 30-37 (in Chinese). | |
25 | 吴圣川, 胡雅楠, 杨冰, 等. 增材制造材料缺陷表征及结构完整性评定方法研究综述[J]. 机械工程学报, 2021, 57(22): 3-34. |
WU S C, HU Y N, YANG B, et al. Review on defect characterization and structural integrity assessment method of additively manufactured materials[J]. Journal of Mechanical Engineering, 2021, 57(22): 3-34 (in Chinese). | |
26 | GONG H J, RAFI K, GU H F, et al. Influence of defects on mechanical properties of Ti⁃6Al⁃4V components produced by selective laser melting and electron beam melting[J]. Materials & Design, 2015, 86: 545-554. |
27 | SEIFI M, SALEM A, BEUTH J, et al. Overview of materials qualification needs for metal additive manufacturing[J]. JOM, 2016, 68(3): 747-764. |
28 | LÜBBEHÜSEN J, ZACHER G. Utilising advanced computed tomography as NDT technique in additive manufacturing[C]∥ 10th International Symposium on NDT in Aerospace, 2018. |
29 | DUTTON B. NDT capability for AM aerospace applications: The MTC perspective[C]∥12th International Symposium on NDT in Aerospace, 2020. |
30 | 杨平华, 史丽军, 梁菁, 等. TC18钛合金增材制造材料超声检测特征的试验研究[J]. 航空制造技术, 2017, 60(5): 38-42. |
YANG P H, SHI L J, LIANG J, et al. Experimental research on ultrasonic characteristics of TC18 additive manufacturing titanium alloy[J]. Aeronautical Manufacturing Technology, 2017, 60(5): 38-42 (in Chinese). | |
31 | 周炳如, 王丙阳, 周言贤, 等. 15 mm厚度TC4合金增材制造制件的射线照相检测[J]. 无损检测, 2018, 40(6): 21-24. |
ZHOU B R, WANG B Y, ZHOU Y X, et al. Radiography testing for TC4 alloy additive manufacturing parts in 15 mm thickness[J]. Nondestructive Testing Technologying, 2018, 40(6): 21-24 (in Chinese). | |
32 | 李文涛, 周正干, 李洋. 环形阵列超声换能器的全聚焦成像方法及其应用[J]. 航空学报, 2020, 41(10): 423657. |
LI W T, ZHOU Z G, LI Y. Total focusing method of ultrasonic annular array and its application[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 423657 (in Chinese). | |
33 | 张文扬, 梁家誉, 栗晓飞, 等. 增材制造航空金属构件的质量分级和检验策略分析[J]. 电焊机, 2021, 51(3): 14-21, 111-112. |
ZHANG W Y, LIANG J Y, LI X F, et al. Analysis on quality grading and inspection strat-egies for fabrication of aviation metal components using additive manufacturing[J]. Electric Welding Machine, 2021, 51(3): 14-21, 111-112 (in Chinese). | |
34 | 曹龙超, 周奇, 韩远飞, 等. 激光选区熔化增材制造缺陷智能监测与过程控制综述[J]. 航空学报, 2021, 42(10): 524790. |
CAO L C, ZHOU Q, HAN Y F, et al. Review on intelligent monitoring of defects and process control of selective laser melting additive manufacturing[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(10): 524790 (in Chinese). | |
35 | ZENZINGER G, BAMBERG J, LADEWIG A, et al. Process monitoring of additive manufacturing by using optical tomography[C]∥ AIP Conference Proceedings. Melville: AIP Publishing LLC, 2015: 1650. |
36 | EVERTON S K, HIRSCH M, STRAVROULAKIS P, et al. Review of in situ process monitoring and in situ metrology for metal additive manufacturing[J]. Materials & Design, 2016, 95: 431-445. |
37 | 白雪, 马健, 许万卫, 等. 基于激光超声的金属增材制造在线检测技术研究[J]. 航空制造技术, 2022, 65(20): 70-82. |
BAI X, MA J, XU W W, et al. Research on online testing technology for metal additive manufacturing based on laser ultrasonic[J]. Aeronautical Manufacturing Technology, 2022, 65(20): 70-82 (in Chinese). | |
38 | 中国民用航空局. 运输类飞机适航标准: CCAR-25-R4 [S]. 北京: 中国民用航空局, 2016. |
Civil Aviation Administration of China. Air-worthiness standards for transport aircraft: CCAR-25-R4 [S]. Beijing: Civil Aviation Administration of China, 2016 (in Chinese). | |
39 | 张洪萍, 罗凯文, 张天宇, 等. 国内外增材制造发展政策及标准建设研究[J]. 中国高新科技, 2022(9): 104-105, 110. |
ZHANG H P, LUO K W, ZHANG T Y, et al. Research on development policy and standard construction of additive manufacturing at home and abroad[J]. China High and New Technology, 2022(9): 104-105, 110 (in Chinese). | |
40 | 万勇, 黄健. 国外增材制造发展政策与研究进展概述[J]. 新材料产业, 2016(6): 2-6. |
WAN Y, HUANG J. Overview of development policies and research progress of additive manufacturing abroad[J]. Advanced Materials Industry, 2016(6): 2-6 (in Chinese). | |
41 | CAMPBELL I, DIEGEL O, HUFF R, et al. Wohlers report 2023: Analysis trends forecasts 3D printing and additive manufacturing state of the industry[M]. West Conshohoken: Wohlers Associates, 2023: 143-144. |
42 | 李方正, 李博, 郭丹. 中国增材制造产业发展现状与趋势展望[J]. 工业技术创新, 2023, 10(3): 1-8. |
LI F Z, LI B, GUO D. Development status and trend prospective of China’s additive manufacturing industry[J]. Industrial Technology Innovation, 2023, 10(3): 1-8 (in Chinese). | |
43 | FAA. Additive manufacturing awareness: AIR 100-15-130-GM39 [S]. Washington, D.C.: FAA, 2015. |
44 | FAA. Engineering considerations for powder bed fusion additively manufactured parts: AIR 100-16-130-GM18 [S]. Washington, D.C.: FAA, 2016. |
45 | FAA. Job aid for additive manufactured parts: AIR 100-16-110-GM26 [S]. Washington, D.C.: FAA, 2016. |
46 | FAA. Guidance material for turbine engine parts and repairs produced by powder bed fusion additive manufacturing process: AC 33.15-4 [S]. Washington, D.C.: FAA, 2018. |
47 | EASA. Certification memorandum additive manufacturing: CM-S-008 [S]. Brussels: EASA, 2017. |
48 | 王向明. 飞机新概念结构设计与工程应用[J]. 航空科学技术, 2020, 31(4): 1-7. |
WANG X M. New concept structure design and engineering application of aircraft[J]. Aeronautical Science & Technology, 2020, 31(4): 1-7 (in Chinese). | |
49 | 王向明, 苏亚东, 吴斌. 增材技术在飞机结构研制中的应用[J]. 航空制造技术, 2014, 57(22): 16-20. |
WANG X M, SU Y D, WU B. Application of additive manufacturing technology on aircraft structure application of additive manufacturing technology on aircraft structure DevelopmentDevelopment[J]. Aeronautical Manufacturing Technology, 2014, 57(22): 16-20 (in Chinese). | |
50 | 温学, 何志平. 金属材料增材制造技术在直升机中的应用发展研究[J]. 航空科学技术, 2022, 33(9): 58-65. |
WEN X, HE Z P. Application and development of additive manufacturing technology in helicopter[J]. Aeronautical Science & Technology, 2022, 33(9): 58-65 (in Chinese). | |
51 | 王婧超, 谭指, 刘彬, 等. 基于激光增材制造技术的航天运载器上面级舱体结构一体化设计与成形方法[J]. 宇航材料工艺, 2018, 48(4): 60-62. |
WANG J C, TAN Z, LIU B, et al. Design and forming integration method of upper-stage cabin structure in space vehicle based on laser additive manufacturing[J]. Aerospace Materials & Technology, 2018, 48(4): 60-62 (in Chinese). | |
52 | 丁晓红, 张横, 沈洪. 高速飞行器结构优化及增材制造研究进展[J]. 空天防御, 2023, 6(2): 1-11. |
DING X H, ZHANG H, SHEN H. Research progress of structural optimization and additive manufacturing on high-speed aircraft structures[J]. Air & Space Defense, 2023, 6(2): 1-11 (in Chinese). | |
53 | 朱继宏, 何飞, 张卫红. 面向增材制造的飞行器结构优化设计关键问题[J]. 航空制造技术, 2017, 60(5): 16-21. |
ZHU J H, HE F, ZHANG W H. Key optimization design issues for achieving additively manufactured aircraft and aerospace structures[J]. Aeronautical Manufacturing Technology, 2017, 60(5): 16-21 (in Chinese). | |
54 | BUROV V, OGNEVA T, DUL’BEEVA O. The issue of quality assurance of materials in additive manufacturing of metal products[J]. IOP Conference Series: Materials Science and Engineering, 2019, 681(1): 012006. |
55 | GISARIO A, KAZARIAN M, MARTINA F, et al. Metal additive manufacturing in the commercial aviation industry: A review[J]. Journal of Manufacturing Systems, 2019, 53: 124-149. |
56 | GUPTA P, KRISHNA C, RAJESH R, et al. Industrial Internet of Things in intelligent manufacturing: A review, approaches, opportunities, open challenges, and future directions[J]. International Journal on Interactive Design and Manufacturing (IJIDeM), (2022-10-21) [2023-08-22]. . |
57 | Digital transformation for manufacturing companies and industrials | GE digital[EB/OL]. . |
58 | GLAESSGEN E, STARGEL D. The digital twin paradigm for future NASA and U.S. air force vehicles[C]∥ Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2012. |
59 | MUKHERJEE T, DEBROY T. A digital twin for rapid qualification of 3D printed metallic components[J]. Applied Materials Today, 2019, 14: 59-65. |
60 | MANDOLLA C, PETRUZZELLI A M, PERCOCO G, et al. Building a digital twin for additive manufacturing through the exploitation of blockchain: A case analysis of the aircraft industry[J]. Computers in Industry, 2019, 109: 134-152. |
61 | TAO F, ZHANG H, LIU A, et al. Digital twin in industry: State-of-the-art[J]. IEEE Transactions on Industrial Informatics, 2019, 15(4): 2405-2415. |
62 | TAO F, CHENG J F, QI Q L, et al. Digital twin-driven product design, manufacturing and service with big data[J]. The International Journal of Advanced Manufacturing Technology, 2018, 94(9): 3563-3576. |
63 | LIU C, LE ROUX L, KÖRNER C, et al. Digital twin-enabled collaborative data management for metal additive manufacturing systems[J]. Journal of Manufacturing Systems, 2022, 62: 857-874. |
64 | GUNASEGARAM D R, MURPHY A B, BARNARD A, et al. Towards developing multiscale-multiphysics models and their surrogates for digital twins of metal additive manufacturing[J]. Additive Manufacturing, 2021, 46: 102089. |
65 | LUO S D, SONG T T, LIU B, et al. Recent advances in the design and fabrication of strong and ductile (tensile) titanium metal matrix composites[J]. Advanced Engineering Materials, 2019, 21(7): 1801331. |
66 | DURSUN T, SOUTIS C. Recent developments in advanced aircraft aluminium alloys[J]. Materials & Design, 2014, 56: 862-871. |
67 | DIXIT S, LIU S Y. Laser additive manufacturing of high-strength aluminum alloys: Challenges and strategies[J]. Journal of Manufacturing and Materials Processing, 2022, 6(6): 156. |
68 | 宋波, 张金良, 章媛洁, 等. 金属激光增材制造材料设计研究进展[J]. 金属学报, 2023, 59(1): 1-15. |
SONG B, ZHANG J L, ZHANG Y J, et al. Research progress of materials design for metal laser additive manufacturing[J]. Acta Metallurgica Sinica, 2023, 59(1): 1-15 (in Chinese). | |
69 | WEI C, ZHANG Z Z, CHENG D X, et al. An overview of laser-based multiple metallic material additive manufacturing: From macro- to micro-scales[J]. International Journal of Extreme Manufacturing, 2021, 3(1): 012003. |
70 | TIAN X X, ZHAO Z, WANG H B, et al. Progresses on the additive manufacturing of functionally graded metallic materials[J]. Journal of Alloys and Compounds, 2023, 960: 170687. |
71 | 陈向明, 姚辽军, 果立成, 等. 3D打印连续纤维增强复合材料研究现状综述[J]. 航空学报, 2021, 42(10): 524787. |
CHEN X M, YAO L J, GUO L C, et al. 3D printed continuous fiber-reinforced composites: State of the art and perspectives[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(10): 524787 (in Chinese). | |
72 | 王林林, 冷劲松, 杜善义. 4D打印形状记忆聚合物及其复合材料的研究现状和应用进展[J]. 哈尔滨工业大学学报, 2020, 52(6): 227-244. |
WANG L L, LENG J S, DU S Y. 4D printing of shape memory polymers and their composites: Research status and application progress[J]. Journal of Harbin Institute of Technology, 2020, 52(6): 227-244 (in Chinese). | |
73 | 潘新, 张英伟, 刘艳梅, 等. 金属增材制造技术应用于军用飞机维修保障浅析[J]. 航空制造技术, 2021, 64(3): 34-43. |
PAN X, ZHANG Y W, LIU Y M, et al. Applications of metal additive manufacturing technology in maintenance and support for military aircraft[J]. Aeronautical Manufacturing Technology, 2021, 64(3): 34-43 (in Chinese). | |
74 | 黄春杰, 殷硕, 李文亚, 等. 冷喷涂技术及其系统的研究现状与展望[J]. 表面技术, 2021, 50(7): 1-23. |
HUANG C J, YIN S, LI W Y, et al. Cold spray technology and its system: Research status and prospect[J]. Surface Technology, 2021, 50(7): 1-23 (in Chinese). |
[1] | 刘小川, 惠旭龙, 张欣玥, 白春玉, 闫亚斌, 李肖成, 牟让科. 典型民用飞机全机坠撞实验研究[J]. 航空学报, 2024, 45(5): 529664-529664. |
[2] | 李勐, 陈星伊, 陈吉昌, 吴彬, 童明波. 波浪情况下民机水上迫降性能数值分析[J]. 航空学报, 2024, 45(2): 28-43. |
[3] | 唐论, 余圣甫, 郑博, 史玉升, 陈颖. 圆柱面点阵自生Al2O3铝合金粉芯丝材开发及应用[J]. 航空学报, 2023, 44(9): 626864-626864. |
[4] | 张卫红, 周涵, 李韶英, 朱继宏, 周璐. 航天高性能薄壁构件的材料-结构一体化设计综述[J]. 航空学报, 2023, 44(9): 627428-627428. |
[5] | 林忠钦, 于忠奇, 戴冬华, 樊晓光, 余圣甫, 顾冬冬, 李淑慧, 史玉升. 复杂高筋薄壁构件旋压-增材复合制造技术发展与展望[J]. 航空学报, 2023, 44(9): 627493-627493. |
[6] | 顾孟奇, 朱家才, 郭万林, 薛松. 可重复使用运载火箭结构疲劳耐久性与可靠性展望[J]. 航空学报, 2023, 44(23): 628299-628299. |
[7] | 陈小前, 赵勇, 霍森林, 张泽雨, 都柄晓. 多尺度结构拓扑优化设计方法综述[J]. 航空学报, 2023, 44(15): 528863-528863. |
[8] | 张志强, 勾青泽, 路学成, 王浩, 曹轶然, 郭志永. 高强铝合金CMT+P电弧增材制造熔滴过渡行为[J]. 航空学报, 2023, 44(13): 427881-427881. |
[9] | 毕文豪, 范秋岑, 李德林, 张安. 基于多视角的民机正向设计建模方法[J]. 航空学报, 2023, 44(10): 227536-227536. |
[10] | 李涤尘, 鲁中良, 田小永, 张航, 杨春成, 曹毅, 苗恺. 增材制造——面向航空航天制造的变革性技术[J]. 航空学报, 2022, 43(4): 525387-525387. |
[11] | 姚燕生, 周瑞根, 张成林, 梅涛, 吴敏. 增材制造复杂金属构件表面抛光技术[J]. 航空学报, 2022, 43(4): 525202-525202. |
[12] | 张佩宇, 周鑫, 李应红. 单晶涡轮叶片高能束修复研究进展[J]. 航空学报, 2022, 43(4): 525610-525610. |
[13] | 李汇, 李光先, 高瑞麟, 金鑫, 刘璐, 李朝将, Songlin DING. 不锈钢增材制造件后处理工艺研究进展[J]. 航空学报, 2022, 43(4): 525847-525847. |
[14] | 李志强, 陈玮. 高能束流加工技术在航空领域的应用进展[J]. 航空学报, 2022, 43(4): 526882-526882. |
[15] | 王天帅, 贺小帆, 王金宇, 李玉海. 基于双峰对数正态分布模型的DED-TA15钛合金DFR值估计方法[J]. 航空学报, 2022, 43(3): 225013-225013. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学