1 |
张柯. 面向增材制造的双目视觉三维重建若干关键技术研究[D]. 武汉: 华中科技大学, 2020.
|
|
ZHANG K. Research on technologies of three-dimensional reconstruction of binocular vision for additive manufacturing[D]. Wuhan: Huazhong University of Science and Technology, 2020 (in Chinese).
|
2 |
赵剑峰, 马智勇, 谢德巧, 等. 金属增材制造技术[J]. 南京航空航天大学学报, 2014, 46(5): 675-683.
|
|
ZHAO J F, MA Z Y, XIE D Q, et al. Metal additive manufacturing technique[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2014, 46(5): 675-683 (in Chinese).
|
3 |
倪江涛, 隋阳, 刘涵, 等. 增材制造技术在国外航天动力系统中的应用[J]. 导弹与航天运载技术, 2022(3): 144-146, 152.
|
|
NI J T, SUI Y, LIU H, et al. Applications of additive manufacturing in foreign aerospace propulsion systems[J]. Missiles and Space Vehicles, 2022(3): 144-146, 152 (in Chinese).
|
4 |
赵晋. 基于结构光系统的复杂增材制造件三维质量检测方法研究[D]. 北京: 北京工业大学, 2019.
|
|
ZHAO J. Research on 3D quality inspection method for complex additive manufacturing parts based on structured light sensor[D]. Beijing: Beijing University of Technology, 2019 (in Chinese).
|
5 |
WANG R X, LAW A C, GARCIA D, et al. Development of structured light 3D-scanner with high spatial resolution and its applications for additive manufacturing quality assurance[J]. The International Journal of Advanced Manufacturing Technology, 2021, 117(3): 845-862.
|
6 |
郭政亚, 熊振华. 金属增材制造缺陷检测技术[J]. 哈尔滨工业大学学报, 2020, 52(5): 49-57.
|
|
GUO Z Y, XIONG Z H. Defect detection technology in metal additive manufacturing[J]. Journal of Harbin Institute of Technology, 2020, 52(5): 49-57 (in Chinese).
|
7 |
肖明颖, 范振红, 高华兵, 等. 金属增材制造在线监测/检测技术的研究进展[J]. 热加工工艺, 2020, 49(24): 1-7.
|
|
XIAO M Y, FAN Z H, GAO H B, et al. Research progress of on-line monitoring/inspection technology for metal additive manufacturing[J]. Hot Working Technology, 2020, 49(24): 1-7 (in Chinese).
|
8 |
WALLER J M, SAULSBERRY R L, PARKER B H, et al. Summary of NDE of additive manufacturing efforts in NASA[C]∥AIP Conference Proceedings. New York: AIP Publishing LLC, 2015, 1650: 51-62.
|
9 |
季苏苏. 金属增材制造表面及亚表面缺陷的高频超声检测技术研究[D]. 南京: 东南大学, 2021.
|
|
JI S S. Investigation on high frequency ultrasonic testing technology of surface and subsurface defects in metal additive manufactured parts[D].Nanjing: Southeast University, 2021 (in Chinese).
|
10 |
陈樱莹. 面向金属增材制造过程的零件三维形貌测量技术研究[D]. 南京: 南京航空航天大学, 2018.
|
|
CHEN Y Y. Research on 3D shape measurement of parts for metal additive manufacturing process[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2018 (in Chinese).
|
11 |
苏显渝, 张启灿, 陈文静. 结构光三维成像技术[J]. 中国激光, 2014, 41(2): 0209001.
|
|
SU X Y, ZHANG Q C, CHEN W J. Three-dimensional imaging based on structured illumination[J]. Chinese Journal of Lasers, 2014, 41(2): 0209001 (in Chinese).
|
12 |
孙园, 李大心. 相位测量轮廓术的应用现状及发展趋势[J]. 无损检测, 2006, 28(3): 130-132.
|
|
SUN Y, LI D X. Application and development of phase measuring profilometry[J]. Nondestructive Testing, 2006, 28(3): 130-132 (in Chinese).
|
13 |
张宗华, 刘巍, 刘国栋, 等. 三维视觉测量技术及应用进展[J]. 中国图象图形学报, 2021, 26(6): 1483-1502.
|
|
ZHANG Z H, LIU W, LIU G D, et al. Overview of the development and application of 3D vision measurement technology[J]. Journal of Image and Graphics, 2021, 26(6): 1483-1502 (in Chinese).
|
14 |
TAKEDA M, INA H, KOBAYASHI S. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry[J]. Journal of the Optical Society of America (1917-1983), 1982, 72(1): 156.
|
15 |
SU X Y, CHEN W J. Reliability-guided phase unwrapping algorithm: A review[J]. Optics and Lasers in Engineering, 2004, 42(3): 245-261.
|
16 |
XING Y, QUAN C, TAY C J. A modified phase-coding method for absolute phase retrieval[J]. Optics and Lasers in Engineering, 2016, 87: 97-102.
|
17 |
XUE J P, ZHANG Q C, LI C H, et al. 3D face profilometry based on galvanometer scanner with infrared fringe projection in high speed[J]. Applied Sciences, 2019, 9(7): 1458.
|
18 |
LI L, ZHENG Y, YANG K, et al. Modified three-wavelength phase unwrapping algorithm for dynamic three-dimensional shape measurement[J]. Optics Communications, 2021, 480: 126409.
|
19 |
ZUO C, QIAN J M, FENG S J, et al. Deep learning in optical metrology: A review[J]. Light: Science & Applications, 2022, 11: 39.
|
20 |
ZHANG B, ZIEGERT J, FARAHI F, et al. In situ surface topography of laser powder bed fusion using fringe projection[J]. Additive Manufacturing, 2016, 12: 100-107.
|
21 |
KALMS M, NARITA R, THOMY C, et al. New approach to evaluate 3D laser printed parts in powder bed fusion-based additive manufacturing in-line within closed space[J]. Additive Manufacturing, 2019, 26: 161-165.
|
22 |
O’DOWD N M, WACHTOR A J, TODD M D. Effects of digital fringe projection operational parameters on detecting powder bed defects in additive manufacturing[J]. Additive Manufacturing, 2021, 48: 102454.
|
23 |
ZHANG H L, VALLABH C K P, XIONG Y B, et al. A systematic study and framework of fringe projection profilometry with improved measurement performance for in situ LPBF process monitoring[J]. Measurement, 2022, 191: 110796.
|
24 |
CATALUCCI S, SENIN N, SIMS-WATERHOUSE D, et al. Measurement of complex freeform additively manufactured parts by structured light and photogrammetry[J]. Measurement, 2020, 164: 108081.
|
25 |
刘珏, 董世运, 孙椰望, 等. 直接能量沉积成形技术质量控制的研究现状[J]. 制造技术与机床, 2020(6): 44-48.
|
|
LIU J, DONG S Y, SUN Y W, et al. The status of directed energy deposition(DED) research on the quality control[J]. Manufacturing Technology & Machine Tool, 2020(6): 44-48 (in Chinese).
|
26 |
张传鹏, 雷剑波, 方艳, 等. 激光熔凝过程中金属熔池光谱检测[J]. 应用激光, 2013, 33(5): 487-492.
|
|
ZHANG C P, LEI J B, FANG Y, et al. Measurement of spectrum distribution of metal molten pool in laser melting[J]. Applied Laser, 2013, 33(5): 487-492 (in Chinese).
|
27 |
WANG M, ZHANG Q C, LI Q, et al. Research on morphology detection of metal additive manufacturing process based on fringe projection and binocular vision[J]. Applied Sciences, 2022, 12(18): 9232.
|
28 |
苏显渝, 谭松新, 向立群, 等. 基于傅里叶变换轮廓术方法的复杂物体三维面形测量[J]. 光学学报, 1998, 18(9): 1228-1233.
|
|
SU X Y, TAN S X, XIANG L Q, et al. Complex object shape measurement using FTP method[J]. Acta Optica Sinica, 1998, 18(9): 1228-1233 (in Chinese).
|
29 |
左超, 张晓磊, 胡岩, 等. 3D真的来了吗?——三维结构光传感器漫谈[J]. 红外与激光工程, 2020, 49(3): 0303001.
|
|
ZUO C, ZHANG X L, HU Y, et al. Has 3D finally come of age? —An introduction to 3D structured-light sensor[J]. Infrared and Laser Engineering, 2020, 49(3): 0303001 (in Chinese).
|
30 |
CHEN K, XI J T, YU Y G, et al. Fast quality-guided flood-fill phase unwrapping algorithm for three-dimensional fringe pattern profilometry[C]∥Proceedings Volume 7855, Optical Metrology and Inspection for Industrial Applications. Washington, D. C.: SPIE, 2010: 78550X.
|
31 |
吴双卿. 光栅投影三维形貌测量技术的研究[D]. 成都: 西南交通大学, 2005.
|
|
WU S Q. Three-dimensional measuring method with grating projection[D].Chengdu: Southwest Jiaotong University, 2005 (in Chinese).
|
32 |
隋婧, 金伟其. 双目立体视觉技术的实现及其进展[J]. 电子技术应用, 2004, 30(10): 4-6, 12.
|
|
SUI J, JIN W Q. Realization and progress of binocular stereo vision technology[J]. Application of Electronic Technique, 2004, 30(10): 4-6, 12 (in Chinese).
|
33 |
沈彤, 刘文波, 王京. 基于双目立体视觉的目标测距系统[J]. 电子测量技术, 2015, 38(4): 52-54.
|
|
SHEN T, LIU W B, WANG J. Distance measurement system based on binocular stereo vision[J]. Electronic Measurement Technology, 2015, 38(4): 52-54 (in Chinese).
|
34 |
FUSIELLO A, TRUCCO E, VERRI A. A compact algorithm for rectification of stereo pairs[J]. Machine Vision and Applications, 2000, 12(1): 16-22.
|
35 |
ZHANG Z. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330-1334.
|