1 |
CHENEY M C. The ABC helicopter[J]. Journal of the American Helicopter Society, 1969, 14(4): 10-19.
|
2 |
KWON Y M, PARK J S, WIE S Y, et al. Aeromechanics analyses of a modern lift-offset coaxial rotor in high-speed forward flight[J]. International Journal of Aeronautical and Space Sciences, 2021, 22(2): 338-351.
|
3 |
OZDEMIR G T. In-flight performance optimization for rotorcraft with redundant controls[D]. Michigan: The Pennsylvania State University, 2013: 48-49.
|
4 |
CAO Y H, WANG M S, LI G Z. Flight dynamics modeling, trim, stability, and controllability of coaxial compound helicopters[J]. Journal of Aerospace Engineering, 2021, 34(6): 04021084.
|
5 |
QIU Y Q, LI Y, LANG J X, et al. Dynamics analysis and control of coaxial high-speed helicopter in transition flight[J]. Aerospace Science and Technology, 2023, 137: 108278.
|
6 |
FERGUSON K, THOMSON D. Performance comparison between a conventional helicopter and compound helicopter configurations[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2015, 229(13): 2441-2456.
|
7 |
SAITO S, AZUMA A. A numerical approach to co-axial rotor aerodynamics[C]∥Seventh European Rotorcraft and Powered Lift Aircraft Forum. Garmisch-Partenkirchen: Federal Republic of Germany, 1981.
|
8 |
VALKOV T V. Aerodynamic loads computation on coaxial hingeless helicopter rotors[C]∥ Proceedings of the 28th Aerospace Sciences Meeting. Reston: AIAA, 1990.
|
9 |
KIM H W, KENYON A R, BROWN R E, et al. Interactional aerodynamics and acoustics of a hingeless coaxial helicopter with an auxiliary propeller in forward flight[J]. The Aeronautical Journal, 2009, 113(1140): 65-78.
|
10 |
佘明人. 共轴刚性旋翼高速直升机飞行动力学建模及飞行特性研究[D]. 南京: 南京航空航天大学, 2021: 11-19.
|
|
SHE M R. Research on the flight dynamics modeling and flight characteristics of a coaxial rigid rotor high-speed helicopter[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021: 11-19 (in Chinese).
|
11 |
张银. 复合式共轴刚性旋翼直升机气动干扰及飞行特性分析[D]. 南京: 南京航空航天大学, 2014: 47-49.
|
|
ZHANG Y. Research on aerodynamic interaction and flight characteristics of compound helicopter with rigid coaxial rotor[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014: 47-49 (in Chinese).
|
12 |
袁野, 陈仁良, 李攀. 基于涡环尾迹模型的共轴刚性旋翼直升机飞行动力学建模[J]. 航空学报, 2018, 39(3): 121564.
|
|
YUAN Y, CHEN R L, LI P. Flight dynamic modelling for coaxial rigid rotor helicopter using vortex-ring wake model[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(3): 121564 (in Chinese).
|
13 |
卢丛玲, 祁浩天, 徐国华. 升力偏置对共轴刚性旋翼前飞气动特性的影响[J]. 航空学报, 2019, 40(11): 122906.
|
|
LU C L, QI H T, XU G H. Influence of lift offset on rigid coaxial rotor aerodynamic characteristics in forward flight[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(11): 122906 (in Chinese).
|
14 |
原昕, 招启军, 朱正, 等. 前飞速度和升力偏置量对共轴刚性旋翼气动特性影响分析[J]. 南京航空航天大学学报, 2019, 51(2): 213-219.
|
|
YUAN X, ZHAO Q J, ZHU Z, et al. Flow-field characteristics measurements of coaxial rigid rotor in forward flight[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51(2): 213-219 (in Chinese).
|
15 |
HAYAMI K, SUGAWARA H, YUMINO T, et al. CFD analysis on the performance of a coaxial rotor with lift offset at high advance ratios[J]. Aerospace Science and Technology, 2023, 135: 108194.
|
16 |
ZHAO Q J, ZHAO G Q, WANG B, et al. Robust Navier-Stokes method for predicting unsteady flowfield and aerodynamic characteristics of helicopter rotor[J]. Chinese Journal of Aeronautics, 2018, 31(2): 214-224.
|
17 |
WANG B, CAO C K, ZHAO Q J, et al. Aeroacoustic characteristic analyses of coaxial rotors in hover and forward flight[J]. International Journal of Aeronautical and Space Sciences, 2021, 22(6): 1278-1292.
|
18 |
招启军, 张威, 原昕, 等. 共轴刚性旋翼气动外形优化设计[J]. 南京航空航天大学学报, 2019, 51(2): 160-165.
|
|
ZHAO Q J, ZHANG W, YUAN X, et al. Optimization design of coaxial rotor aerodynamic planform[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51(2): 160-165 (in Chinese).
|
19 |
NAGASHIMA T, SHINOHARA K, BABA T. A flow visualization study for the tip vortex geometry of the coaxial counter rotating rotor in hover[J]. Technical Note, 1977, 25(284): 442-445.
|
20 |
COLEMAN C P. A survey of theoretical and experimental coaxial rotor aerodynamic research: NASA/TP-1997-3675[R]. Washington, D.C.: NASA, 1997.
|
21 |
DINGELDEIN R C. Wind-tunnel studies of the performance of multirotor configurations: NACA/TN-1954-3236[R]. Washington, D.C.: NACA, 1954.
|
22 |
EVANS A J, LINER G. A wind-tunnel investigation of the aerodynamic characteristics of a full-scale sweptback propeller and two related straight propellers: NACA/RM-1951-L5005[R]. Washington, D.C.: NACA, 1951.
|
23 |
FREEMAN C E, MINECK R E. Fuselage surface pressure measurements of a helicopter wind-tunnel model with a 3.15-meter diameter single rotor: NASA/TM-1979-80051[R]. Washington, D.C.: NASA, 1979.
|
24 |
WANG B, YUAN X, ZHAO Q J, et al. Geometry design of coaxial rigid rotor in high-speed forward flight[J]. International Journal of Aerospace Engineering, 2020, 2020: 6650375.
|
25 |
陈仁良, 高正. 直升机飞行动力学[M]. 北京: 科学出版社, 2003: 4-8.
|
|
CHEN R L, GAO Z. Helicopter flight dynamics[M]. Beijing: Science Press, 2003: 4-8 (in Chinese).
|
26 |
JING S M, ZHAO Q J, ZHAO G Q, et al. Multi-objective airfoil optimization under unsteady-freestream dynamic stall conditions[J]. Journal of Aircraft, 2023, 60(2): 293-309.
|
27 |
BALLIN M. Validation of a real-time engineering simulation of the UH-60A helicopter: NASA-TM88360[R]. Washington, D.C.: NASA, 1987.
|