航空学报 > 2025, Vol. 46 Issue (3): 130808-130808   doi: 10.7527/S1000-6893.2024.30808

基于遗传/梯度混合优化策略的高超内转式进气道设计方法

陈军1,2, 屈峰1,2(), 付俊杰1,2   

  1. 1.西北工业大学 航空学院,西安 710072
    2.飞行器基础布局全国重点实验室,西安 710072
  • 收稿日期:2024-06-07 修回日期:2024-07-01 接受日期:2024-07-31 出版日期:2024-08-06 发布日期:2024-08-05
  • 通讯作者: 屈峰 E-mail:qufeng@nwpu.edu.cn
  • 基金资助:
    国家自然科学基金(11972308)

Design method of hypersonic inward turning inlet based on genetic and gradient hybrid optimization strategy

Jun CHEN1,2, Feng QU1,2(), Junjie FU1,2   

  1. 1.School of Aeronautics,Northwestern Polytechnical University,Xi’an 710072,China
    2.National Key Laboratory of Aircraft Configuration Design,Xi’an 710072,China
  • Received:2024-06-07 Revised:2024-07-01 Accepted:2024-07-31 Online:2024-08-06 Published:2024-08-05
  • Contact: Feng QU E-mail:qufeng@nwpu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(11972308)

摘要:

高超声速内转式进气道因具有高压缩效率、高流量系数等优点受到广泛关注。目前,通过传统设计方法构造的内转式进气道性能具有较大提升空间。为此,提出了一种基于遗传/梯度混合优化策略的高超声速内转式进气道设计方法,并在马赫数6工况下,采用该方法完成了内转式进气道的设计。首先,基于遗传优化问题开展基准流场全局构型设计,得到了性能良好基准流场的Pareto前缘,选取其中典型双入射激波基准流场,并以此为基础设计了双入射激波内转式进气道;其次,基于伴随梯度优化问题对上述双入射激波内转式进气道进行型面精细化设计,得到了性能进一步提升的进气道;最终,相较于传统正设计方法生成的内转式进气道,采用本文设计方法构造的内转式进气道性能参数大幅提升,其流量系数提升了2.33%、总压恢复系数增大了13.15%、增压比提高了7.90%、畸变系数DC60下降了3.70%。其中,全局构型设计阶段通过基准流场中心体半径、出口半径等总体参数的设计,确定了性能最优基准流场的全局构型;进气道型面精细化设计阶段通过局部型面的起伏变化,增强了流量捕获与隔离段激波系的增压,减弱了第2道入射激波的总压损失、流向涡以及隔离段激波边界层干扰造成的流动分离,进而使得隔离段的总压损失减少、出口流动更均匀。

关键词: 高超声速, 内转式进气道, 遗传算法, 梯度优化, 基准流场

Abstract:

The hypersonic inward-turning inlet has attracted wide attention because of its higher compression efficiency and larger flow coefficient. Nowadays, traditional design methods cannot achieve the optimal performance of the inlet. Therefore, coupling the genetic algorithm and the gradient algorithm, this paper proposes a new design method for the hypersonic inward-turning inlet based on the hybrid optimization strategy, and completes the design of the inlet at Mach number 6. Firstly, the global configuration design of the basic flowfield is conducted using genetic optimization, resulting in a Pareto front of basic flowfields with good performance. Among them, a typical dual-shock wave basic flowfield is selected to design the dual-shock wave inward-turning inlet. Secondly, the refined shape design of the above inlet is carried out based on adjoint gradient optimization, which further improves the performance of the inlet. Consequently, compared to inward-turning inlets designed using the traditional forward design methods, the performance of the inlet constructed by the design method is significantly improved. The flow coefficient, total pressure recovery coefficient and pressure rising ratio are increased by 2.33%, 13.15% and 7.90%, respectively, and the distortion coefficient (DC60) is reduced by 3.70%. During the global configuration design, the overall parameters of the basic flowfield, such as the radius of the center body and outlet, are designed to obtain the optimal-performing global configuration of basic flowfield. During the refined shape design, the fluctuations of the inlet surface improve the mass capture performance and compression capability of the shock wave in the isolation section. In addition, the surface deformation also weakens the total pressure loss caused by the second incident shock wave, the development of streamwise vortexes and the flow separation induced by shock-wave/turbulent-layer interaction in the isolation section. Furthermore, the weakening of streamwise vortexes and flow separation results in the reduction of total pressure loss in the isolation section and the improvement of flow uniformity on the outflow boundary.

Key words: hypersonic, inward-turning inlet, genetic algorithm, gradient-based optimization, basic flowfield

中图分类号: