收稿日期:
2024-06-07
修回日期:
2024-07-01
接受日期:
2024-07-31
出版日期:
2024-08-06
发布日期:
2024-08-05
通讯作者:
屈峰
E-mail:qufeng@nwpu.edu.cn
基金资助:
Jun CHEN1,2, Feng QU1,2(), Junjie FU1,2
Received:
2024-06-07
Revised:
2024-07-01
Accepted:
2024-07-31
Online:
2024-08-06
Published:
2024-08-05
Contact:
Feng QU
E-mail:qufeng@nwpu.edu.cn
Supported by:
摘要:
高超声速内转式进气道因具有高压缩效率、高流量系数等优点受到广泛关注。目前,通过传统设计方法构造的内转式进气道性能具有较大提升空间。为此,提出了一种基于遗传/梯度混合优化策略的高超声速内转式进气道设计方法,并在马赫数6工况下,采用该方法完成了内转式进气道的设计。首先,基于遗传优化问题开展基准流场全局构型设计,得到了性能良好基准流场的Pareto前缘,选取其中典型双入射激波基准流场,并以此为基础设计了双入射激波内转式进气道;其次,基于伴随梯度优化问题对上述双入射激波内转式进气道进行型面精细化设计,得到了性能进一步提升的进气道;最终,相较于传统正设计方法生成的内转式进气道,采用本文设计方法构造的内转式进气道性能参数大幅提升,其流量系数提升了2.33%、总压恢复系数增大了13.15%、增压比提高了7.90%、畸变系数DC60下降了3.70%。其中,全局构型设计阶段通过基准流场中心体半径、出口半径等总体参数的设计,确定了性能最优基准流场的全局构型;进气道型面精细化设计阶段通过局部型面的起伏变化,增强了流量捕获与隔离段激波系的增压,减弱了第2道入射激波的总压损失、流向涡以及隔离段激波边界层干扰造成的流动分离,进而使得隔离段的总压损失减少、出口流动更均匀。
中图分类号:
陈军, 屈峰, 付俊杰. 基于遗传/梯度混合优化策略的高超内转式进气道设计方法[J]. 航空学报, 2025, 46(3): 130808.
Jun CHEN, Feng QU, Junjie FU. Design method of hypersonic inward turning inlet based on genetic and gradient hybrid optimization strategy[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(3): 130808.
表 6
设计点Ma=6进气道性能对比
构型 | φ | σth | pth/p0 | Math | σout | pout/p0 | Maout | DC60 |
---|---|---|---|---|---|---|---|---|
Inlet_ori | 0.975 2 | 0.696 6 | 19.10 | 3.191 | 0.531 7 | 23.30 | 2.814 | 4.27 |
Inlet_opt1 | 0.965 4 | 0.736 5 | 19.87 | 3.215 | 0.553 1 | 23.18 | 2.841 | 4.88 |
Inlet_opt2 | 0.977 3 | 0.734 9 | 17.78 | 3.319 | 0.548 8 | 20.25 | 2.934 | 5.23 |
opt1相对ori参数变化/% | -1.00 | 5.73 | 4.03 | 0.75 | 4.02 | -0.52 | 0.96 | 14.13 |
opt2相对ori参数变化/% | 0.22 | 5.50 | -6.91 | 4.01 | 3.22 | -13.09 | 4.26 | 22.32 |
表 7
非设计点Ma=4进气道性能对比
构型 | φ | σth | pth/p0 | Math | σout | pout/p0 | Maout | DC60 |
---|---|---|---|---|---|---|---|---|
Inlet_ori | 0.780 0 | 0.799 0 | 15.26 | 1.95 | 0.677 2 | 16.67 | 1.78 | 1.37 |
Inlet_opt1 | 0.768 3 | 0.966 3 | 12.11 | 3.71 | 0.686 8 | 16.41 | 1.80 | 1.55 |
Inlet_opt2 | 0.784 3 | 0.824 2 | 12.84 | 2.09 | 0.695 4 | 14.23 | 1.90 | 1.62 |
opt1相对ori参数变化/% | -1.49 | 20.94 | -86.18 | 89.83 | 1.42 | -1.58 | 0.90 | 13.54 |
opt2相对ori参数变化/% | 0.55 | 3.15 | -15.84 | 6.84 | 2.69 | -14.67 | 6.63 | 18.05 |
表 8
进气道性能对比
构型 | Ma0 | φ | σth | pth/p0 | Math | σout | pout/p0 | Maout | DC60 |
---|---|---|---|---|---|---|---|---|---|
Inlet_opt3 | 6 | 0.997 9 | 0.767 1 | 16.96 | 3.338 | 0.601 6 | 25.14 | 2.848 | 4.11 |
4 | 0.811 6 | 0.966 1 | 2.12 | 3.71 | 0.672 9 | 18.54 | 1.71 | 1.38 | |
Inlet_opt3相对Inlet_opt1的参数变化/% | 6 | 3.37 | 4.15 | -14.65 | 3.83 | 8.77 | 8.46 | 0.25 | -15.63 |
4 | 5.64 | -0.02 | 0.46 | -0.04 | -2.02 | 12.96 | -4.96 | -11.43 | |
Inlet_opt3相对Inlet_ori的参数变化/% | 6 | 2.33 | 10.12 | -11.20 | 4.61 | 13.15 | 7.90 | 1.21 | -3.70 |
4 | 4.06 | 20.91 | -86.12 | 89.75 | -0.63 | 11.17 | -4.10 | 0.56 |
1 | 吴颖川, 贺元元, 贺伟, 等. 吸气式高超声速飞行器机体推进一体化技术研究进展[J]. 航空学报, 2015, 36(1): 245-260. |
WU Y C, HE Y Y, HE W, et al. Progress in airframe-propulsion integration technology of air-breathing hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 245-260 (in Chinese). | |
2 | 南向军. 压升规律可控的高超声速内收缩进气道设计方法研究[D]. 南京: 南京航空航天大学, 2012. |
NAN X J. Study on design method of hypersonic internal contraction inlet with controllable pressure rise law[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2012 (in Chinese). | |
3 | GOLLAN R, GOLLAN R, FERLEMANN P, et al. Investigation of REST-class hypersonic inlet designs: AIAA-2011-2254[R]. Reston: AIAA, 2011. |
4 | 李怡庆, 施崇广, 朱呈祥, 等. 乘波前体三维内转进气道气动融合设计[J]. 推进技术, 2018, 39(10): 2320-2328. |
LI Y Q, SHI C G, ZHU C X, et al. Aerodynamic combination design concept for hypersonic waverider forebody and inward turning inlet[J]. Journal of Propulsion Technology, 2018, 39(10): 2320-2328 (in Chinese). | |
5 | 尤延铖, 梁德旺, 郭荣伟, 等. 高超声速三维内收缩式进气道/乘波前体一体化设计研究评述[J]. 力学进展, 2009, 39(5): 513-525. |
YOU Y C, LIANG D W, GUO R W, et al. Overview of the integration of three-dimensional inward turning hypersonic inlet and waverider forebody[J]. Advances in Mechanics, 2009, 39(5): 513-525 (in Chinese). | |
6 | 乔文友, 余安远. 内转式进气道与飞行器前体的一体化设计综述[J]. 实验流体力学, 2019, 33(3): 43-59. |
QIAO W Y, YU A Y. Overview on integrated design of inward-turning inlet with aircraft forebody [J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 43-59 (in Chinese). | |
7 | MA Y, GUO M M, TIAN Y, et al. Recent advances and prospects in hypersonic inlet design and intelligent optimization[J]. Aerospace Science and Technology, 2024, 146: 108953. |
8 | 李永洲, 张堃元, 王磊, 等. 马赫数分布可控的基准流场灵敏度分析与优化设计[J]. 航空动力学报, 2013, 28(4): 765-774. |
LI Y Z, ZHANG K Y, WANG L, et al. Sensitivity analysis and optimization design of basic flowfield with controllable Mach number distribution[J]. Journal of Aerospace Power, 2013, 28(4): 765-774 (in Chinese). | |
9 | 王骥飞, 蔡晋生, 段焰辉. 高超声速内收缩进气道分步优化设计方法[J]. 航空学报, 2015, 36(12): 3759-3773. |
WANG J F, CAI J S, DUAN Y H. Multistage optimization design method of hypersonic inward turning inlet[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(12): 3759-3773 (in Chinese). | |
10 | 高琨鹏, 陈兵, 徐旭. 基于PNS算法的高超声速内转式进气道优化设计[J]. 推进技术, 2017, 38(5): 998-1007. |
GAO K P, CHEN B, XU X. Optimization design of hypersonic inward turning inlet based on SSPNS algorithm[J]. Journal of Propulsion Technology, 2017, 38(5): 998-1007 (in Chinese). | |
11 | XIONG B, FAN X Q, WANG Y. Parameterization and optimization design of a hypersonic inward turning inlet[J]. Acta Astronautica, 2019, 164: 130-141. |
12 | 冯茜, 李擎, 全威, 等. 多目标粒子群优化算法研究综述[J]. 工程科学学报, 2021, 43(6): 745-753. |
FENG Q, LI Q, QUAN W, et al. Overview of multiobjective particle swarm optimization algorithm[J]. Chinese Journal of Engineering, 2021, 43(6): 745-753 (in Chinese). | |
13 | TAYLOR T, VANWIE D. Performance analysis of hypersonic shape-changing inlets derived from morphing streamline traced flowpaths: AIAA-2008- 2635[R]. Reston: AIAA, 2008. |
14 | DRAYNA T, NOMPELIS I, CANDLER G. Hypersonic inward turning inlets: Design and optimization: AIAA-2006-0297[R]. Reston: AIAA, 2006. |
15 | 陈栋梁. 流线追踪Busemann进气道粘性修正方法研究[D]. 长沙: 国防科技大学, 2009. |
CHEN D L. Study on viscosity correction method of Busemann inlet with streamline tracking[D].Changsha: National University of Defense Technology, 2009 (in Chinese). | |
16 | 王仁杰. 超/高超声速进气道高效优化方法及应用研究[D]. 南京: 南京航空航天大学, 2019. |
WANG R J. Study on efficient optimization method and application of supersonic/hypersonic inlet[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2019 (in Chinese). | |
17 | KLINE H L, PALACIOS F, ECONOMON T D, et al. Adjoint-based optimization of a hypersonic inlet: AIAA-2015-3060[R]. Reston: AIAA, 2015. |
18 | 黄河峡, 谭慧俊, 庄逸, 等. 高超声速进气道/隔离段内流特性研究进展[J]. 推进技术, 2018, 39(10): 2252-2273. |
HUANG H X, TAN H J, ZHUANG Y, et al. Progress in internal flow characteristics of hypersonic inlet/isolator[J]. Journal of Propulsion Technology, 2018, 39(10): 2252-2273 (in Chinese). | |
19 | LI Y M, LI Z F, YANG J M. Tomography-like flow visualization of a hypersonic inward-turning inlet[J]. Chinese Journal of Aeronautics, 2021, 34(1): 44-49. |
20 | 王晓峰, 屈峰, 付俊杰, 等. 基于离散伴随的高超内转式进气道气动优化设计[J]. 航空学报, 2023, 44(19): 51-67. |
WANG X F, QU F, FU J J, et al. Discrete adjoint-based aerodynamic design optimization for hypersonic inward turning inlet[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(19): 51-67 (in Chinese). | |
21 | QU F, WANG T Y, LIU C Y, et al. Aerodynamic shape optimization of the vortex-shock integrated waverider over a wide speed range[J]. Aerospace Science and Technology, 2023, 143: 108696. |
22 | 刘超宇, 屈峰, 孙迪, 等. 基于离散伴随的高超声速密切锥乘波体气动优化设计[J]. 航空学报, 2023, 44(4): 64-82. |
LIU C Y, QU F, SUN D, et al. Discretized adjoint based aerodynamic optimization design for hypersonic osculating-cone waverider[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(4): 64-82 (in Chinese). | |
23 | ZINGG D W, NEMEC M, PULLIAM T H. A comparative evaluation of genetic and gradient-based algorithms applied to aerodynamic optimization[J]. European Journal of Computational Mechanics, 2008, 17(1-2): 103-126. |
24 | LYU Z J, XU Z L, MARTINS J. Benchmarking optimization algorithms for wing aerodynamic design optimization[C]∥Proceedings of the 8th International Conference on Computational Fluid Dynamics. Chengdu: University of Michigan, 2014. |
25 | SEDERBERG T W, PARRY S R. Free-form deformation of solid geometric models[C]∥Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 1986. |
26 | LUKE E, COLLINS E, BLADES E. A fast mesh deformation method using explicit interpolation[J]. Journal of Computational Physics, 2012, 231(2): 586-601. |
27 | GILL P E, MURRAY W, SAUNDERS M A. SNOPT: An SQP algorithm for large-scale constrained optimization[J]. SIAM Review, 2005, 47(1): 99-131. |
28 | 王丹. 飞行器气动外形优化设计方法研究与应用[D]. 西安: 西北工业大学, 2015. |
WANG D. Research and application of aircraft aerodynamic shape optimization design method[D].Xi’an: Northwestern Polytechnical University, 2015 (in Chinese). | |
29 | DEB K. An efficient constraint handling method for genetic algorithms[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 186(2-4): 311-338. |
30 | DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. |
31 | 陈颂. 基于梯度的气动外形优化设计方法及应用[D]. 西安: 西北工业大学, 2016. |
CHEN S. Gradient-based aerodynamic shape optimization design method and its application[D]. Xi’an: Northwestern Polytechnical University, 2016 (in Chinese). | |
32 | NADARAJAH S, JAMESON A. A comparison of the continuous and discrete adjoint approach to automatic aerodynamic optimization: AIAA-2000-0667[R]. Reston: AIAA, 2000. |
33 | PUYERO A, ZINGG D, PUYERO A, et al. An efficient Newton-GMRES solver for aerodynamic computations: AIAA-1997-1955[R]. Reston: AIAA, 1997. |
34 | MARTA A C, MADER C A, MARTINS J R R A, et al. A methodology for the development of discrete adjoint solvers using automatic differentiation tools[J]. International Journal of Computational Fluid Dynamics, 2007, 21(9-10): 307-327. |
35 | 李永洲, 张堃元, 朱伟, 等. 双弯曲入射激波的可控中心体内收缩基准流场设计[J]. 航空动力学报, 2015, 30(3): 563-570. |
LI Y Z, ZHANG K Y, ZHU W, et al. Design for inward turning basic flowfield with controlled center body and two incident curved shock waves[J]. Journal of Aerospace Power, 2015, 30(3): 563-570 (in Chinese). | |
36 | 卫锋, 贺旭照, 贺元元, 等. 三维内转式进气道双激波基准流场的设计方法[J]. 推进技术, 2015, 36(3): 358-364. |
WEI F, HE X Z, HE Y Y, et al. Design method of dual-shock wave basic flow-field for inward turning inlet[J]. Journal of Propulsion Technology, 2015, 36(3): 358-364 (in Chinese). | |
37 | SPALART P, ALLMARAS S. A one-equation turbulence model for aerodynamic flows: AIAA-1992-0439[R]. Reston: AIAA, 1992. |
38 | JAMESON A, YOON S. Lower-upper implicit schemes with multiple grids for the Euler equations[J]. AIAA Journal, 1987, 25(7): 929-935. |
39 | GROPP W, KEYES D, MCINNES L C, et al. Globalized newton-krylov-schwarz algorithms and software for parallel implicit CFD[J]. The International Journal of High Performance Computing Applications, 2000, 14(2): 102-136. |
40 | 钟亚飞, 马宏伟, 郭君德, 等. 航空发动机进气总压畸变地面试验数据处理方法综述[J]. 航空发动机, 2021, 47(1): 72-85. |
ZHONG Y F, MA H W, GUO J D, et al. Review of ground test data processing method of aeroengine inlet total pressure distortion[J]. Aeroengine, 2021, 47(1): 72-85 (in Chinese). | |
41 | KNOWLES J. ParEGO: A hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(1): 50-66. |
42 | 王晨曦, 谭慧俊, 张启帆, 等. 高超声速进气道低马赫数不起动和再起动试验[J]. 航空学报, 2017, 38(11): 38-49. |
WANG C X, TAN H J, ZHANG Q F, et al. Test of low Mach number unstart and restart processes of hypersonic inlet[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(11): 38-49 (in Chinese). | |
43 | 李永洲, 张堃元, 孙迪. 马赫数可控的方转圆高超声速内收缩进气道试验研究[J]. 航空学报, 2016, 37(10): 2970-2979. |
LI Y Z, ZHANG K Y, SUN D. Experimental investigation on a hypersonic inward turning inlet of rectangular-to-circular shape with controlled Mach number distribution[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(10): 2970-2979 (in Chinese). |
[1] | 马维宁, 胡起伟, 贾希胜. 考虑多资源约束的多任务条件下装备选择性维修决策[J]. 航空学报, 2025, 46(2): 227327-227327. |
[2] | 杨凯, 张勐飞, 施崇广, 余耀堃, 郑晓刚, 朱呈祥, 尤延铖. 三维弯曲流面法及其在外流乘波体中的应用[J]. 航空学报, 2025, 46(2): 130492-130492. |
[3] | 李学良, 李创创, 张亚寒, 苏伟, 吴杰. 分布式烧蚀形貌对高超声速平板边界层不稳定性影响[J]. 航空学报, 2025, 46(2): 130464-130464. |
[4] | 王有盛, 孙立国, 魏金鹏, 谭文倩, 潘永豪. 基于改进鸡群-Gauss伪谱法的组合动力飞机爬升轨迹优化方法[J]. 航空学报, 2025, 46(2): 230737-230737. |
[5] | 刘宇, 赵淼, 何青松. 充气式减速结构壁面变形对热化学非平衡流场的影响[J]. 航空学报, 2025, 46(1): 630727-630727. |
[6] | 梁帅, 高广乐, 曲晓雷, 李雅君. 基于误差累积因子的高超声速飞行器渐进控制[J]. 航空学报, 2024, 45(S1): 730745-730745. |
[7] | 崔壮壮, 原昕, 赵国庆, 井思梦, 招启军. 共轴刚性旋翼高速直升机前飞性能操纵策略影响[J]. 航空学报, 2024, 45(9): 529256-529256. |
[8] | 郑建成, 曲智国, 谭贤四, 李志淮, 朱刚, 李陆军, 刘伟. 基于责任区划分的雷达网探测高超声速目标资源管理[J]. 航空学报, 2024, 45(8): 329022-329022. |
[9] | 戴今钊, 陈海昕. 流场波系引导的三维消波翼优化设计方法[J]. 航空学报, 2024, 45(6): 628942-628942. |
[10] | 刘小勇, 王明福, 刘建文, 任鑫, 张轩. 超燃冲压发动机研究回顾与展望[J]. 航空学报, 2024, 45(5): 529878-529878. |
[11] | 杨博, 于贺, 樊子辰. 微观能量分析气动光学效应时变误差的方法[J]. 航空学报, 2024, 45(4): 128703-128703. |
[12] | 张定金, 雷娟棉, 赵瑞. 壁温对高超声速裙锥边界层感受性的影响规律[J]. 航空学报, 2024, 45(24): 130290-130290. |
[13] | 周琳, 黄江涛, 钟世东, 刘刚, 邓俊, 高正红. 考虑吸波材料的雷达散射截面伴随优化方法[J]. 航空学报, 2024, 45(24): 130347-130347. |
[14] | 张成键, 吕岱霖, 朱畅, 陈坚强, 吴杰. HyTRV升力体高超声速边界层稳定性实验[J]. 航空学报, 2024, 45(22): 130272-130272. |
[15] | 李鹏, 丁明松, 陈坚强, 刘庆宗, 傅杨奥骁, 江涛, 梅杰, 许勇. 一种新型热力学两温度模型数值计算方法[J]. 航空学报, 2024, 45(22): 130287-130287. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 116
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 492
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学