| 1 |
YAN J G, SONG G P, LEUS R, et al. Rolling weight-matching methods for the inter-satellite link assignment in global navigation satellite systems[J]. GPS Solutions, 2022, 26(2): 38.
|
| 2 |
YAN Z B, ZHAO K L, LI W F, et al. Topology design for GNSSs under polling mechanism considering both inter-satellite links and ground-satellite links[J]. IEEE Transactions on Vehicular Technology, 2022, 71(2): 2084-2097.
|
| 3 |
HAN K, XU B B, SHAO F W, et al. An adaptive topology optimization strategy for intersatellite links in GNSS[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(6): 5894-5907.
|
| 4 |
YAN J G, XING L N, WANG P, et al. A scheduling strategy to inter-satellite links assignment in GNSS[J]. Advances in Space Research, 2021, 67(1): 198-208.
|
| 5 |
BERCEAU P, TAYLOR M, KAHN J, et al. Space-time reference with an optical link[J]. Classical and Quantum Gravity, 2016, 33(13): 135007.
|
| 6 |
GIORGI G, KROESE B, MICHALAK G. Future GNSS constellations with optical inter-satellite links. Preliminary space segment analyses[C]∥2019 IEEE Aerospace Conference. Piscataway: IEEE Press, 2019.
|
| 7 |
SUROF J, POLIAK J, CALVO R M, et al. Laboratory characterization of optical inter-satellite links for future GNSS[C]∥Proceedings of the 32nd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+2019). Manassas Institute of Navigation, 2019.
|
| 8 |
POLIAK J, CALVO R M, SUROF J, et al. Laboratory demonstrator of optical inter-satellite links for the Kepler system[C]∥Proceedings of the 31st International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+2018). Manassas Institute of Navigation, 2018.
|
| 9 |
DEPREZ C, GIORGI G. Operational envelope and link scheduling for inter-satellite links in next-generation GNSSs[C]∥2021 IEEE Aerospace Conference. Piscataway: IEEE Press, 2021.
|
| 10 |
MICHALAK G, GIORGI G, DEPREZ C. Enhanced orbit determination of GNSSs with optical inter-satellite links[C]∥Proceedings of the 34th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+2021). Manassas Institute of Navigation, 2021.
|
| 11 |
杨飞, 陈迪俊, 韩申生, 等. 基于光学技术的新一代全球导航定位定时系统架构[J]. 中国激光, 2024, 51(11): 1101018.
|
|
YANG F, CHEN D J, HAN S S, et al. New generation of global navigation positioning and timing system based on optical technology[J]. Chinese Journal of Lasers, 2024, 51(11): 1101018 (in Chinese).
|
| 12 |
YANG Y X, MAO Y, REN X, et al. Demand and key technology for a LEO constellation as augmentation of satellite navigation systems[J]. Satellite Navigation, 2024, 5(1): 11.
|
| 13 |
LIU R Z, SHENG M, LUI K S, et al. Capacity analysis of two-layered LEO/MEO satellite networks[C]∥2015 IEEE 81st Vehicular Technology Conference (VTC Spring). Piscataway: IEEE Press, 2015.
|
| 14 |
LI Y, WANG Y, ZHANG Q Y, et al. TCDS: A time-relevant graph based topology control in triple-layer satellite networks[J]. IEEE Wireless Communications Letters, 2020, 9(3): 424-428.
|
| 15 |
HUANG Y X, FENG B H, DONG P, et al. A multi-objective based inter-layer link allocation scheme for MEO/LEO satellite networks[C]∥2022 IEEE Wireless Communications and Networking Conference (WCNC). Piscataway: IEEE Press, 2022.
|
| 16 |
YAN Z B, GU G Y, ZHAO K L, et al. Integer linear programming based topology design for GNSSs with inter-satellite links[J]. IEEE Wireless Communications Letters, 2021, 10(2): 286-290.
|
| 17 |
XU B B, HAN K, REN Q Y, et al. An optimized strategy for inter-satellite links assignments in GNSS[J]. Advances in Space Research, 2023, 71(1): 720-730.
|
| 18 |
董明佶, 林宝军, 刘迎春, 等. 基于多目标模拟退火算法的导航卫星激光星间链路拓扑动态优化[J]. 中国激光, 2018, 45(7): 0706004.
|
|
DONG M J, LIN B J, LIU Y C, et al. Topology dynamic optimization for inter-satellite laser links of navigation satellite based on multi-objective simulated annealing method[J]. Chinese Journal of Lasers, 2018, 45(7): 0706004 (in Chinese).
|
| 19 |
ZENG L C, LU X C, BAI Y, et al. Topology design algorithm for optical inter-satellite links in future navigation satellite networks[J]. GPS Solutions, 2022, 26(2): 57.
|
| 20 |
丁文, 左勇, 叶小舟, 等. 一种基于局部激光高速节点骨干网络的星间链路拓扑规划与仿真优化方法[J]. 全球定位系统, 2020, 45(6): 10-15.
|
|
DING W, ZUO Y, YE X Z, et al. A method of topology planning and simulation optimization of inter-satellite link(ISL) based on local laser high-speed node backbone network[J]. GNSS World of China, 2020, 45(6): 10-15 (in Chinese).
|
| 21 |
王呈倬. 导航星座激光/微波星间链路协同网络拓扑与路由研究[D]. 长沙: 国防科技大学, 2019.
|
|
WANG C Z. Research on topology and routing of cooperative network of laser/microwave inter-satellite link in navigation constellation[D]. Changsha: National University of Defense Technology, 2019 (in Chinese).
|
| 22 |
邵丰伟. 卫星导航系统星间链路网络建链路由技术研究[D]. 北京: 中国科学院大学, 2017, 18-20.
|
|
SHAO F W. Research on assignment and routing algorithms of navigation system inner-satellite link network [D]. Beijing: University of Chinese Academy of Sciences, 2017, 18-20 (in Chinese).
|
| 23 |
KENNEDY J, EBERHART R. Particle swarm optimization[C]∥Proceedings of ICNN'95-International Conference on Neural Networks. Piscataway: IEEE Press, 1995.
|
| 24 |
KENNEDY J, EBERHART R C. A discrete binary version of the particle swarm algorithm[C]∥1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation. Piscataway: IEEE Press, 1997.
|
| 25 |
COELLO C A C, PULIDO G T, LECHUGA M S. Handling multiple objectives with particle swarm optimization[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 256-279.
|
| 26 |
DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
|
| 27 |
刘灿由, 张峰, 王兴, 等. 导航星座高速星间链路的设计分析[C]∥第十一届中国卫星导航年会论文集——S13自主导航, 2020.
|
|
LIU C Y, ZHANG F, WANG X, et al. Design and analysis of high speed inter satellite link in navigation constellation[C]∥Proceedings of the Eleventh China Satellite Navigation Conference-S13 Automatic Navigation, 2020 (in Chinese).
|
| 28 |
MCDONNELL J R, REYNOLDS R G, FOGEL D B. Adapting crossover in evolutionary algorithms[C]∥Evolutionary Programming Ⅳ: Proceedings of the Fourth Annual Conference on Evolutionary Programming. Cambridge: MIT Press, 1995: 367-384.
|
| 29 |
NEUBAUER A. A theoretical analysis of the non-uniform mutation operator for the modified genetic algorithm[C]∥Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97). Piscataway: IEEE Press, 1997.
|
| 30 |
ZHANG Q F, LI H. MOEA/D: A multiobjective evolutionary algorithm based on decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(6): 712-731.
|
| 31 |
NADIMI-SHAHRAKI M H, ZAMANI H, ASGHARI VARZANEH Z, et al. A systematic review of the whale optimization algorithm: Theoretical foundation, improvements, and hybridizations[J]. Archives of Computational Methods in Engineering, 2023, 30(7): 4113-4159.
|
| 32 |
SHANG K, ISHIBUCHI H, HE L J, et al. A survey on the hypervolume indicator in evolutionary multiobjective optimization[J]. IEEE Transactions on Evolutionary Computation, 2021, 25(1): 1-20.
|