1 |
昂海松. 微型飞行器的现状、难题和发展趋势[C]∥2014(第五届)中国无人机大会论文集. 2014: 664-669.
|
|
Ang H S. Current situation, difficulties and development trend of micro air vehicles [C]∥ Proceedings of the 2014 (fifth) China UAV Conference. 2014: 664-669 (in Chinese).
|
2 |
ISAKHANI H, XIONG C, CHEN W, et al. Towards locust-inspired gliding wing prototypes for micro aerial vehicle applications[J]. Royal Society Open Science, 2021, 8(6): 202253.
|
3 |
ZHOU Y, HO H W, CHU Q P. Extended incremental nonlinear dynamic inversion for optical flow control of micro air vehicles[J]. Aerospace Science and Technology, 2021, 116: 106889.
|
4 |
GUO S, YANG D, KUMMARI K L, et al. A smart material aeroelastic flapping wing micro rotorcraft[C]∥ Int Forum on Aeroelasticity and Structural Dynamics 2009. 2009.
|
5 |
JI B, ZHU Q L, GUO S J, et al. Design and experiment of a bionic flapping wing mechanism with flapping-twist-swing motion based on a single rotation[J]. AIP Advances, 2020, 10(6): 065018.
|
6 |
GEORGE R B. Design and analysis of a flapping wing mechanism for optimization[D]. Provo: Brigham Young University, 2011.
|
7 |
CHEN S, WANG L, GUO S J, et al. A bio-inspired flapping wing rotor of variant frequency driven by ultrasonic motor[J]. Applied Sciences, 2020, 10(1): 412.
|
8 |
JI B, LI Z, GUO S, et al. Aerodynamic analysis of a flapping wing aircraft for short landing[J]. Applied Sciences, 2020, 10(10): 3404.
|
9 |
LI H, GUO S. Aerodynamic efficiency of a bioinspired flapping wing rotor at low Reynolds number[J]. Royal Society Open Science, 2018, 5(3): 171307.
|
10 |
LI H, GUO S, ZHANG Y L, et al. Unsteady aerodynamic and optimal kinematic analysis of a micro flapping wing rotor[J]. Aerospace Science and Technology, 2017, 63: 167-178.
|
11 |
WEN Q Q, GUO S J, LI H, et al. Nonlinear dynamics of a flapping rotary wing: Modeling and optimal wing kinematic analysis[J]. Chinese Journal of Aeronautics, 2018, 31(5): 1041-1052.
|
12 |
ZHOU C, ZHANG Y L, WU J H. Effect of flexibility on unsteady aerodynamics forces of a purely plunging airfoil[J]. Chinese Journal of Aeronautics, 2020, 33(1): 88-101.
|
13 |
FAIRUZ Z M, ABDULLAH M Z, ZUBAIR M, et al. Effect of wing deformation on the aerodynamic performance of flapping wings: Fluid-structure interaction approach[J]. Journal of Aerospace Engineering, 2016, 29(4): 04016006.
|
14 |
KEENNON M, KLINGEBIEL K, WON H. Development of the nano hummingbird: A tailless flapping wing micro air vehicle[C]∥ 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2012.
|
15 |
CHEN Y F, MA K, WOOD R J. Influence of wing morphological and inertial parameters on flapping flight performance[C]∥ 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE Press, 2016: 2329-2336.
|
16 |
周超, 吴江浩. 微型扑旋翼飞行器悬停的空气动力学研究[J]. 无人系统技术, 2018, 1(4): 33-42.
|
|
ZHOU C, WU J H. Aerodynamics of micro flapping rotary wings in hovering flight[J]. Unmanned Systems Technology, 2018, 1(4): 33-42 (in Chinese).
|
17 |
NEWMAN D J S. The functional wing morphology of some Odonata[D]. Exeter: University of Exeter, 1982.
|
18 |
KUKALOVÁ-PECK J. Origin of the insect wing and wing articulation from the arthropodan leg[J]. Canadian Journal of Zoology, 1983, 61(7): 1618-1669.
|
19 |
SONG F, XIAO K W, BAI K, et al. Microstructure and nanomechanical properties of the wing membrane of dragonfly[J]. Materials Science and Engineering: A, 2007, 457(1-2): 254-260.
|
20 |
DARVIZEH M, DARVIZEH A, RAJABI H, et al. Free vibration analysis of dragonfly wings using finite element method[J]. International Journal of Multiphysics, 2016, 3(1): 101-110.
|
21 |
WANG G Y, GUO Z G, LIU W M. Interfacial effects of superhydrophobic plant surfaces: A review[J]. Journal of Bionic Engineering, 2014, 11(3): 325-345.
|
22 |
KEMPF M. Efficient determination of reliability characteristics by incorporating experts’ knowledge [J]. TM-Technisches Messen, 2011, 78(10): 463-469.
|
23 |
张金. 三种昆虫膜翅结构仿生模型与纳米力学[D]. 长春: 吉林大学, 2008.
|
|
ZHANG J. Bionic model and nano-mechanics of membrane wing structure of three insects[D]. Changchun: Jilin University, 2008 (in Chinese).
|
24 |
SUN J Y, PAN C X, TONG J, et al. Coupled model analysis of the structure and nano-mechanical properties of dragonfly wings[J]. IET Nanobiotechnology, 2010, 4(1): 10-18.
|
25 |
于秀林, 任雪松. 多元统计分析[M]. 北京: 中国统计出版社, 1999.
|
|
YU X L, REN X S. Multivariate statistical analysis[M]. Beijing: China Statistics Press, 1999 (in Chinese).
|
26 |
COMBES S A. Wing flexibility and design for animal flight[D]. Seattle: University of Washington, 2002.
|
27 |
COMBES S A, DANIEL T L. Flexural stiffness in insect wings. II. Spatial distribution and dynamic wing bending[J]. The Journal of Experimental Biology, 2003, 206(Pt 17): 2989-2997.
|
28 |
刘芸. 典型脉膜刚柔耦合结构昆虫翅膀的形态特征及力学性能[D]. 长春: 吉林大学, 2016.
|
|
LIU Y. Morphological characteristics and mechanical properties of insect wings with typical vein membrane rigid-flexible coupling structure[D]. Changchun: Jilin University, 2016 (in Chinese).
|
29 |
贺媛媛, 张航, 王琦琛, 等. 扑旋翼刚度和翼梢形状对气动升力和效率的影响[J]. 航空学报, 2023, 44(12): 127779.
|
|
HE Y Y, ZHANG H, WANG Q C, et al. The effect of stiffness and wingtip shape on the aerodynamic lift and efficiency of a flapping wing rotor[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(12): 127779 (in Chinese).
|