航空学报 > 2021, Vol. 42 Issue (9): 224646-224646   doi: 10.7527/S1000-6893.2020.24646

扑翼飞行器动力系统建模方法

年鹏1, 宋笔锋1, 宣建林1,2, 王思琦1   

  1. 1. 西北工业大学 航空学院, 西安 710072;
    2. 西北工业大学 长三角研究院, 太仓 215400
  • 收稿日期:2020-08-17 修回日期:2020-09-15 发布日期:2020-10-10
  • 通讯作者: 宣建林 E-mail:xuan@nwpu.edu.cn
  • 基金资助:
    科技部重点研发计划(2017YFB1300102);国家自然科学基金(11872314,U1613227)

Modeling method for propulsion system of flapping wing vehicles

NIAN Peng1, SONG Bifeng1, XUAN Jianlin1,2, WANG Siqi1   

  1. 1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Yangtze River Delta Research Institute, Northwestern Polytechnical University, Taicang 215400, China
  • Received:2020-08-17 Revised:2020-09-15 Published:2020-10-10
  • Supported by:
    National Key Research and Development Program of China (2017YFB1300102); National Natural Science Foundation of China (11872314, U1613227)

摘要: 为快速评估扑翼飞行器的航时,便于针对不同扑动翼进行动力系统设计与优化,逐步减少实物验证与试飞,加快扑翼飞行器的研制,基于实验数据参数辨识的方法建立了包含直流无刷电机、电调(ESC)、锂电池和扑动机构等扑翼飞行器动力系统组件的动态模型,其中电机模型相对误差小于10%,锂电池动态模型相对误差小于6%;提出了一种基于风洞试验气动数据和功率数据的扑动轴瞬时气动载荷半经验高精度建模方法,解决了气动载荷测量较为困难的问题,模型确定系数大于0.89;集成以上模型后的扑翼飞行器仿真系统还包含扑动翼周期平均气动模型、平尾气动模型和纵向控制模型,确保仿真在动态配平状态下进行,可进行全任务剖面航时仿真,航时仿真与实际试飞结果相比误差小于3%。集成的扑翼飞行器仿真系统采用模块化建模思想,各模型参数独立可调,能进一步应用于扑翼飞行器多学科优化等研究。

关键词: 扑翼飞行器, 动力系统建模, 扑动翼建模, 仿真系统, 航时仿真

Abstract: Based on the experimental data parameter identification method, dynamic models of the propulsion system components of flapping wing vehicles, including brushless DC motors, Electronic Speed Controller (ESC), lithium batteries and the flapping mechanism, are established to rapidly evaluate the endurance of the flapping wing air vehicle, facilitate the design and optimization of the propulsion system for different flapping wings, gradually reduce physical verification and test flights, and speed up the development of the flapping wing air vehicle. Among these models, the relative error of the motor model is smaller than 10% and that of the lithium battery dynamic model smaller than 6%. A semi-empirical high-precision modeling method for the instantaneous aerodynamic load of the flapping shaft is proposed based on the aerodynamic data and power data of the wind tunnel experimental data, solving the aerodynamic load measurement problem with the coefficient of determination larger than 0.89. The flapping wing vehicle simulation system, which integrates the above models, also includes a cycle-averaged aerodynamic model of the flapping wing, an aerodynamic model of the horizontal tail and a longitudinal control model to ensure that the simulation was conducted in a trim state. This system can be used for full mission profile endurance simulation, with the error between endurance simulation and the test flight results smaller than 3%. Adopting the modular method, the integrated flapping wing air vehicle simulation system enables independent adjustment of the parameters in each model, providing further application to the research on multi-disciplinary optimization of the flapping wing air vehicle.

Key words: flapping wing vehicles, modeling of propulsion system, modeling of flapping wing, simulation systems, endurance simulation

中图分类号: