1 |
JONES K D, BRADSHAW C J, PAPADOPOULOS J, et al. Bio-inspired design of flapping-wing micro air vehicles[J]. The Aeronautical Journal, 2005, 109(1098): 385-393.
|
2 |
DE CROON G C H E, DE CLERCQ K M E, RUIJSINK R, et al. Design, aerodynamics, and vision-based control of the DelFly [J]. International Journal of Micro Air Vehicles, 2009, 1(2): 71-97.
|
3 |
PHAN H V, PARK H C. Insect-inspired, tailless, hover-capable flapping-wing robots: Recent progress, challenges, and future directions[J]. Progress in Aerospace Sciences, 2019, 111: 100573.
|
4 |
SHYY W, AONO H, CHIMAKURTHI S K, et al. Recent progress in flapping wing aerodynamics and aeroelasticity[J]. Progress in Aerospace Sciences, 2010, 46(7): 284-327.
|
5 |
MISHRA S, TRIPATHI B, GARG S, et al. Design and development of a bio-inspired flapping wing type micro air vehicle[J]. Procedia Materials Science, 2015, 10: 519-526.
|
6 |
YANG L J, FENG A L, LEE H C, et al. The three-dimensional flow simulation of a flapping wing[J]. Journal of Marine Science and Technology, 2018, 26(3): 2.
|
7 |
HU H, KUMAR A G, ABATE G, et al. An experimental investigation on the aerodynamic performances of flexible membrane wings in flapping flight[J]. Aerospace Science and Technology, 2010, 14(8): 575-586.
|
8 |
KARÁSEK M, MUIJRES F T, DE WAGTER C, et al. A tailless aerial robotic flapper reveals that flies use torque coupling in rapid banked turns[J]. Science, 2018, 361(6407): 1089-1094.
|
9 |
WU J H, ZHOU C. Review on aerodynamics of bionic micro air vehicle in hovering flight[J]. Acta Aerodynamica Sinica, 2018, 36(1): 64-79.
|
10 |
GUO S J, LI D C, MATTEO N, et al. Design, experiment and aerodynamic calculation of a flapping wing rotor micro aerial vehicle[C]∥52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2011.
|
11 |
WU J H, ZHOU C, ZHANG Y L. Aerodynamic power efficiency comparison of various micro-air-vehicle layouts in hovering flight[J]. AIAA Journal, 2017, 55(4): 1265-1278.
|
12 |
周超, 吴江浩. 微型扑旋翼飞行器悬停的空气动力学研究[J]. 无人系统技术, 2018, 1(4): 33-42.
|
|
ZHOU C, WU J H. Aerodynamics of micro flapping rotary wings in hovering flight[J]. Unmanned Systems Technology, 2018, 1(4): 33-42 (in Chinese).
|
13 |
谢浩然, 贺媛媛, 陶志坚. 扑旋翼飞行器气动特性分析及机翼拓扑优化设计[J]. 南京航空航天大学学报, 2020, 52(2): 280-287.
|
|
XIE H R, HE Y Y, TAO Z J. Aerodynamic characteristics analysis and topology optimization design of wing of flapping rotorcraft[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2020, 52(2): 280-287 (in Chinese).
|
14 |
CHEN S, WANG L, HE Y Y, et al. Aerodynamic performance of a flyable flapping wing rotor with passive pitching angle variation[J]. IEEE Transactions on Industrial Electronics, 2022, 69(9): 9176-9184.
|
15 |
余春锦, 昂海松. 柔性膜微型扑翼飞行器气动力的数值研究[J]. 中国科学技术大学学报, 2009, 39(12): 1305-1310.
|
|
YU C J, ANG H S. Numerical study of aerodynamics for flexible membrane flapping-wing MAV[J]. Journal of University of Science and Technology of China, 2009, 39(12): 1305-1310 (in Chinese).
|
16 |
DU G, SUN M. Effects of wing deformation on aerodynamic forces in hovering hoverflies[J]. The Journal of Experimental Biology, 2010, 213(Pt 13): 2273-2283.
|
17 |
HEATHCOTE S, WANG Z, GURSUL I. Effect of spanwise flexibility on flapping wing propulsion[J]. Journal of Fluids and Structures, 2008, 24(2): 183-199.
|
18 |
高强, 徐江荣, 王关晴. 柔性扑翼弦向形变气动特性的数值研究[J]. 杭州电子科技大学学报(自然科学版), 2017, 37(6): 86-90.
|
|
GAO Q, XU J R, WANG G Q. Numerical simulation of the flapping wing with chordwise flexibility on the aerodynamic characteristics[J]. Journal of Hangzhou Dianzi University (Natural Sciences), 2017, 37(6): 86-90 (in Chinese).
|
19 |
LIN C S, HWU C, YOUNG W B. The thrust and lift of an ornithopter’s membrane wings with simple flapping motion[J]. Aerospace Science and Technology, 2006, 10(2): 111-119.
|
20 |
NAN Y H, KARÁSEK M, LALAMI M E, et al. Experimental optimization of wing shape for a hummingbird-like flapping wing micro air vehicle[J]. Bioinspiration & Biomimetics, 2017, 12(2): 026010.
|
21 |
ZHOU C, ZHANG Y L, WU J H. Effect of flexibility on unsteady aerodynamics forces of a purely plunging airfoil[J]. Chinese Journal of Aeronautics, 2020, 33(1): 88-101.
|
22 |
FAIRUZ Z M, ABDULLAH M Z, ZUBAIR M, et al. Effect of wing deformation on the aerodynamic performance of flapping wings: Fluid-structure interaction approach[J]. Journal of Aerospace Engineering, 2016, 29(4): 4016006.
|
23 |
LI H, GUO S. Aerodynamic efficiency of a bioinspired flapping wing rotor at low Reynolds number[J]. Royal Society Open Science, 2018, 5(3): 171307.
|
24 |
GUO S, LI H, ZHOU C, et al. Analysis and experiment of a bio-inspired flyable micro flapping wing rotor[J]. Aerospace Science and Technology, 2018, 79: 506-517.
|
25 |
苏醒. 微型扑旋翼飞行器设计与试验[D]. 北京: 北京理工大学, 2017: 64-74.
|
|
SU X. The design and experiment of micro flapping wing rotor[D]. Beijing: Beijing Institute of Technology, 2017: 64-74 (in Chinese).
|
26 |
DONG X, LI D C, XIANG J W, et al. Design and experimental study of a new flapping wing rotor micro aerial vehicle[J]. Chinese Journal of Aeronautics, 2020, 33(12): 3092-3099.
|
27 |
SUN Y, LI D C, JIANG J Q, et al. Design and experimental study of a new flapping wing rotor micro aerial vehicle[C]∥2017 IEEE International Conference on Unmanned Systems (ICUS). Piscataway: IEEE Press, 2018: 29-33.
|
28 |
CHEN S, WANG L, GUO S, et al. A bio-inspired flapping wing rotor of variant frequency driven by ultrasonic motor[J]. Applied Sciences, 2020, 10: 412.
|
29 |
茹伟伟. 蜻蜓仿生翼设计及气动特性研究[D]. 长春: 长春工业大学, 2022.
|
|
RU W W. Design of dragonfly-like wing and research on its aerodynamic characteristics[D]. Changchun: Changchun University of Technology, 2022 (in Chinese).
|
30 |
韩慧. 基于刚度相似性的扑翼结构设计与实验研究[D]. 北京: 北京理工大学, 2022: 22-30.
|
|
HAN H. Design and experimental study of flapping wing structure based on stiffness similarity [D]. Beijing: Beijing Institute of Technology, 2022: 22-30 (in Chinese).
|
31 |
CHEN L, ZHANG Y L, WU J H. Study on lift enhancement of a flapping rotary wing by a bore-hole design[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2018, 232(7): 1315-1333.
|
32 |
XIE C M, HUANG W X. Vortex interactions between forewing and hindwing of dragonfly in hovering flight[J]. Theoretical and Applied Mechanics Letters, 2015, 5(1): 24-29.
|