1 |
CAO Z Y, GAO X, LIU B. Control mechanisms of endwall profiling and its comparison with bowed blading on flow field and performance of a highly-loaded compressor cascade[J]. Aerospace Science and Technology, 2019, 95: 105472.
|
2 |
刘佳鑫, 于贤君, 孟德君, 等. 高压压气机出口级叶型加工偏差特征及其影响[J]. 航空学报, 2021, 42(2): 423796.
|
|
LIU J X, YU X J, MENG D J, et al. State and effect of manufacture deviations of compressor blade in high-pressure compressor outlet stage[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2): 423796 (in Chinese).
|
3 |
XIA Z H, LUO J Q, LIU F. Performance impact of flow and geometric variations for a turbine blade using an adaptive NIPC method[J]. Aerospace Science and Technology, 2019, 90: 127-139.
|
4 |
GOODHAND M N, MILLER R J, LUNG H W. The impact of geometric variation on compressor two-dimensional incidence range[J]. Journal of Turbomachinery, 2015, 137(2): 021007.
|
5 |
郑新前, 王钧莹, 黄维娜, 等. 航空发动机不确定性设计体系探讨[J]. 航空学报, 2023, 44(7): 6-23.
|
|
ZHENG X Q, WANG J Y, HUANG W N, et al. Uncertainty-based design system for aeroengines[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(7): 6-23 (in Chinese).
|
6 |
MA C, GAO L M, WANG H H, et al. Influence of leading edge with real manufacturing error on aerodynamic performance of high subsonic compressor cascades[J]. Chinese Journal of Aeronautics, 2021, 34(6): 220-232.
|
7 |
SCHNELL R, LENGYEL-KAMPMANN T, NICKE E. On the impact of geometric variability on fan aerodynamic performance, unsteady blade row interaction, and its mechanical characteristics[J]. Journal of Turbomachinery, 2014, 136(9): 091005.
|
8 |
WANG J Y, ZHENG X Q. Review of geometric uncertainty quantification in gas turbines[J]. Journal of Engineering for Gas Turbines and Power, 2020, 142(7): 070801.
|
9 |
GARZON V E, DARMOFAL D L. Impact of geometric variability on axial compressor performance[J]. Journal of Turbomachinery, 2003, 125(4): 692-703.
|
10 |
LUO J Q, LIU F. Statistical evaluation of performance impact of manufacturing variability by an adjoint method[J]. Aerospace Science and Technology, 2018, 77: 471-484.
|
11 |
XIU D B, KARNIADAKIS G E. The Wiener: Askey polynomial chaos for stochastic differential equations[J]. SIAM Journal on Scientific Computing, 2002, 24(2): 619-644.
|
12 |
WUNSCH D, HIRSCH C, NIGRO R, et al. Quantification of combined operational and geometrical uncertainties in turbo-machinery design[C]∥ Proceedings of ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. New York: ASME, 2015.
|
13 |
WANG T S, HE X F, WANG J Y, et al. Detail fatigue rating method based on bimodal Weibull distribution for DED Ti-6.5Al-2Zr-1Mo-1V titanium alloy[J]. Chinese Journal of Aeronautics, 2022, 35(4): 281-291.
|
14 |
DER KIUREGHIAN A, LIU P L. Structural reliability under incomplete probability information[J]. Journal of Engineering Mechanics, 1986, 112(1): 85-104.
|
15 |
OLADYSHKIN S, NOWAK W. Incomplete statistical information limits the utility of high-order polynomial chaos expansions[J]. Reliability Engineering & System Safety, 2018, 169: 137-148.
|
16 |
OLADYSHKIN S, CLASS H, HELMIG R, et al. A concept for data-driven uncertainty quantification and its application to carbon dioxide storage in geological formations[J]. Advances in Water Resources, 2011, 34(11): 1508-1518.
|
17 |
OLADYSHKIN S, SCHRÖDER P, CLASS H, et al. Chaos expansion based bootstrap filter to calibrate CO2 injection models[J]. Energy Procedia, 2013, 40: 398-407.
|
18 |
WANG F G, XIONG F F, JIANG H A, et al. An enhanced data-driven polynomial chaos method for uncertainty propagation[J]. Engineering Optimization, 2018, 50(2): 273-292.
|
19 |
AHLFELD R, BELKOUCHI B, MONTOMOLI F. SAMBA: Sparse approximation of moment-based arbitrary polynomial chaos[J]. Journal of Computational Physics, 2016, 320: 1-16.
|
20 |
WANG X T, LIU R P, WANG X Z, et al. A data-driven uncertainty quantification method for stochastic economic dispatch[J]. IEEE Transactions on Power Systems, 2022, 37(1): 812-815.
|
21 |
GUO L, LIU Y L, ZHOU T. Data-driven polynomial chaos expansions: A weighted least-square approximation[J]. Journal of Computational Physics, 2019, 381: 129-145.
|
22 |
WIENER N. The homogeneous chaos[J]. American Journal of Mathematics, 1938, 60(4): 897.
|
23 |
HOSDER S, WALTERS R, BALCH M. Efficient sampling for non-intrusive polynomial chaos applications with multiple uncertain input variables[C]∥ Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2007.
|
24 |
CHUANG-STEIN C. Sample size and the probability of a successful trial[J]. Pharmaceutical Statistics, 2006, 5(4): 305-309.
|
25 |
RAZALI N M, WAH Y B. Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests[J]. Journal of Statistical Modeling and Analytics, 2011, 2(1): 21-33.
|
26 |
蔡明, 高丽敏, 刘哲, 等. 不同条件下平面叶栅风洞流场品质的实验研究[J]. 推进技术, 2021, 42(5): 1162-1170.
|
|
CAI M, GAO L M, LIU Z, et al. Experimental study on flow field quality of linear cascade wind tunnel under different conditions[J]. Journal of Propulsion Technology, 2021, 42(5): 1162-1170 (in Chinese).
|
27 |
蔡明, 高丽敏, 刘哲, 等. 基于抽吸的亚声速平面叶栅风洞流场品质控制研究[J]. 推进技术, 2021, 42(9): 1985-1992.
|
|
CAI M, GAO L M, LIU Z, et al. Flow field quality control of subsonic linear cascade wind tunnel based on suction[J]. Journal of Propulsion Technology, 2021, 42(9): 1985-1992 (in Chinese).
|
28 |
LI R Y, GAO L M, ZHAO L, et al. Dominating unsteadiness flow structures in corner separation under high Mach number[J]. AIAA Journal, 2019, 57(7): 2923-2932.
|
29 |
GOODHAND M N, MILLER R J. Compressor leading edge spikes: A new performance criterion[J]. Journal of Turbomachinery, 2011, 133(2): 1.
|